
Diploma thesis

Tag prediction in

micro-blogging systems

Tobias Schlitt

Diploma thesis
at the department for computer science

of the TU Dortmund university

Dortmund, October 2, 2010

Supervisors:

Prof. Dr. Katharina Morik
Dipl.-Inform. Christian Bockermann

We are like dwarfs on the shoulders of giants.

� Bernard of Chartres

Acknowledgment

I would like to thank everyone who has supported me while writing this diploma
thesis, especially Prof. Dr. Katharina Morik and Dipl.-Inform. Christian Bocker-
mann, my supervisors. In addition, I would like to thank my beloved parents for
supporting me the whole way through my studies and my girlfriend Jenny who
always stood by my side.

License

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contents

List of Figures vii

List of Tables ix

1. Introduction 3

1.1. Motivation . 4
1.2. Goal . 5
1.3. Structure . 6

2. Problem Domain 9

2.1. Tagging . 9
2.1.1. Tags vs. Categories . 9
2.1.2. Formalization . 12
2.1.3. Issues in Tag Systems . 12

2.2. Blogging and Micro-Blogging . 13
2.2.1. Blogging . 13
2.2.2. Micro-blogging . 14
2.2.3. Twitter . 15

2.3. Objectives . 17
2.3.1. Use case . 17
2.3.2. Goal . 18
2.3.3. Related work . 21

3. Data Preparation 23

3.1. Data Representation . 24
3.1.1. Vector Generation . 24
3.1.2. Pre-Processing . 26

3.2. Multi Label Transformation . 27
3.2.1. Transformation Methods . 28
3.2.2. Evaluation . 32

3.3. Label Reduction with FTC . 34
3.3.1. Frequent Item Set Mining 35
3.3.2. Clustering with Frequent Term Sets 37
3.3.3. Label Reduction Technique 40
3.3.4. Evaluation . 42

iii

Contents

4. Classi�cation 47

4.1. Standard Classi�ers . 48
4.1.1. kNN . 48
4.1.2. Naive Bayes . 49
4.1.3. SVM . 51

4.2. Custom Classi�cation Approach . 55
4.2.1. Motivation . 55
4.2.2. Algorithm . 56
4.2.3. Representative Calculation 59

4.3. Evaluation . 62
4.3.1. Evaluation Criteria . 63
4.3.2. Experiment Setup . 66
4.3.3. Experiments . 70

5. Streaming 77

5.1. Stream Basics . 78
5.2. Detecting Changes in Streams . 81

5.2.1. Krimp . 81
5.2.2. StreamKrimp . 87

5.3. Stream Based Classi�cation . 91
5.3.1. Stream Classi�cation Models 91
5.3.2. Evaluation . 94
5.3.3. Experiment Setup . 94

6. Conclusion 99

6.1. Summary . 99
6.2. Future Research . 101

6.2.1. Label Reduction Approach 101
6.2.2. Stream Classi�cation . 101

6.3. Bottom Line . 102

A. The Data Set 103

A.1. Data Set Extraction . 103
A.1.1. Twitter Web Service API . 103
A.1.2. Data Extraction and Sampling 104

A.2. Data Set Statistics . 106
A.2.1. Tagging Behavior . 107
A.2.2. Dictionary and Term Vector Size 108
A.2.3. Term Distribution . 109
A.2.4. Tag Distribution . 110

B. Experiments 111

B.1. Custom Operators . 111

iv

Contents

B.2. Basic Experiment Setup . 113
B.3. Multi-Label Experiments . 115

B.3.1. Experiment Setup . 115
B.3.2. Experiment Results . 116

B.4. Stream Classi�cation Experiments 118
B.4.1. Experiment Setup . 118
B.4.2. Experiment Results . 120

Bibliography 121

v

List of Figures

1.1. Micro-blogging entries per day on Twitter 4

2.1. Visualization of a category tree . 10
2.2. A tag cloud . 11
2.3. Three Tweets on Twitter . 15
2.4. New Twitter users by country . 16
2.5. Mock up: Twitter GUI with tag recommendation 17
2.6. Process of tag recommendation through a web service 18

3.1. Classi�cation on basis of the power set transformation 33
3.2. The lattice of frequent item sets . 37
3.3. Reduction of labels e�ect . 43

4.1. Hyperplane in R2 with linearly separable data 51
4.2. Non-linear-separable data mapped to a feature space K 54
4.3. kNN vs. representative based classi�cation 57
4.4. Di�erent cluster representatives . 60
4.5. Well scattered points . 62
4.6. Classi�cation evaluation operator tree in RapidMiner 67
4.7. Accuracy of standard classi�ers on power set labels 71
4.8. Accuracy of standard classi�ers on reduced power set labels 72
4.9. Custom classi�cation approach accuracy 74
4.10. Naive Bayes vs. custom classi�cation 75

5.1. Di�erent stream window models . 79
5.2. Classi�cation quality overview of stream methods 96
5.3. Krimp stream classi�cation log for User 3 98
5.4. Krimp stream classi�cation log for Reference 98

A.1. Twitter web service URL . 104
A.2. Term distribution statistics . 109
A.3. Tag distribution statistic . 110

B.1. Basic experiment setup . 113
B.2. Power set classi�cation experiment setup 115
B.3. Label reduced classi�cation experiment setup 116

vii

List of Figures

B.4. Classi�cation accuracy on power-set labels 116
B.5. Stream classi�cation experiment setup 119
B.6. Stream classi�cation performance 120

viii

List of Tables

3.1. Example multi-label data set . 28
3.2. Power set method . 29
3.3. Example decomposition method . 31
3.4. Alternative example decomposing method 31
3.5. Classi�cation accuracy on power set labels 34
3.6. Example of a transactional database 35
3.7. FTC clustering evaluation . 46

4.1. Classi�er parameters . 72
4.2. Accuracy vs. α-accuracy . 73

5.1. Stream classi�cation bootstrap e�ect 97

A.1. Tagging behavior statistics . 107
A.2. Dictionary size and term vector length statistics 108
A.3. Tag occurrence statistics . 110

B.1. Accuracy and α-accuracy on power set and reduced labels 117
B.2. Stream classi�cation performance 120

ix

Notation

A,B,C, . . . � denote sets of elementary objects.

a, b, c, . . . � are used to denot elementary objects.

A,B, C, ... � denote sets of sets, so-called set families.

A,B,C, ... � denote special sets of base elemnts, which are used to create nested
set families.

1

Chapter 1

Introduction

With the emergence of the Web 2.0 movement, characterized by the change of
mind from a content-centric to a user-centric web approach, a variety of new web
application types appeared in the past years. All of them have in common that the
user is no more in the role of a pure consumer of content, but actively publishes in-
formation, so-called user-generated content. Furthermore, applications tend to be
implemented as social networks, where fundamental features are user interaction
facilities such as community building, friendship relations, commentary function-
ality and private messaging.
One recent type of social network applications in the Web 2.0 are micro-blogging

services. These services allow users to publish limited size text statements, so
denoted as status updates or micro-blogging entries. Users tend to write such
entries in varying frequencies, ranging from once a week to multiple times per hour.
The content of micro-blogging entries is commonly related to daily life experiences,
commentary about breaking news and recent events. Sharing of links to websites,
photos and videos, but also discussions, are further applications of micro-blogging.
The social network characteristic of the micro-blogging service is typically re�ected
in the possibility to subscribe to other users' status updates. The user is then
provided with an aggregated stream of micro-blogging entries from all users being
subscribed to. Micro-blogging networks are accessed typically from a standard
web browser, but also through dedicated client applications, which communicate
with the network through a web service interface. This way of usage is commonly
exercised via mobile devices, such as cellphones or handheld computers, allowing
the users to send status updates from wherever they are. By integrating photo
and video upload services into such client applications, users can instantly share
impressions from their daily life.
Although being a quite new type of application, micro-blogging has already

reached great popularity, even among mainstream web users. The �rst known
micro-blogging service Twitter 1, which is still the market leader in the area of
dedicated micro-blogging services, registers constant increases in the number of
micro-blogging entries published per day, as can be seen in Figure 1.1. Roughly
50 million Tweets, as micro-blogging entries are denoted on Twitter, have been
published in January 2010, per day. However, the impressive spread of micro-

1http://twitter.com (2010-07-08)

3

Chapter 1. Introduction

Figure 1.1.: Micro-blogging entries published on Twitter per daya.

ahttp://blog.twitter.com/2010/02/measuring-tweets.html (2010-07-09)

blogging has also to be attributed to the large general-use social networks, such
as Facebook2 and the German StudiVZ3, which adopted the concept rapidly into
their feature repertoire.

1.1. Motivation

A typical feature of Web 2.0 applications is tagging, a way of user-based cate-
gorization for content items. In contrast to classical categories, which are well
thought out to provide a degree of objective semantics, tags consist of arbitrary
keywords or short description sentences provided by the users of a system. Users
can typically assign an arbitrary number of tags to their own, and sometimes even
to another user's, content items. Tags are typically used by the application for
information retrieval and recommendation purposes. This observation also holds
for micro-blogging services, where users can assign tags to their status updates.
Tagging systems normally su�er from several problems: Firstly, to categorize

their content items, users are not enforced to assign tags to them. This often

2http://facebook.com (2010-07-08)
3http://studivz.net (2010-07-08)

4

1.2. Goal

results in a system with a large proportion of items that are not tagged at all.
Secondly, users do mostly not care if they re-use tags they have already assigned
to other content items. The e�ect is, that di�erent keywords, e.g. synonyms and
di�erent slang words, are used to denote semantically equivalent categories. The
result is a distraction of information retrieval processes. Finally, spelling mistakes
lead to a similar result, where such categorized items are literally ignored by search
and recommendation features.
One typical approach to mitigate these e�ects is the usage of a recommendation

system for tags on the basis of the earlier tagging behavior of a user. Instead of
just allowing the user to enter tags for a content item in form of text, the system
displays to the user a selection of existing tags that might be �tting to the content.
Users can then select from these tags by simply clicking on them, but also enter
di�erent ones in case the recommendation does not re�ect their intention. The
expected result is that users are motivated to tag their content, i.e. fewer not
tagged items exist, and that the use of synonyms for semantically similar content
and spelling mistakes are reduced.

1.2. Goal

The goal of this thesis is to develop a system for tag recommendation in micro-
blogging systems on the basis of machine learning and data mining techniques. The
desired system should learn the tagging behavior of a user in order to recommend
tags for new micro-blogging entries. In order to make such a tag recommendation
system available to a wide range of web users, the developed approach is meant
to be independent from a speci�c micro-blogging service and client application.
Therefore, the goal is to design the system to be feasible for implementation as a
web service. This way, any micro-blogging service or client application can integrate
the approach without the need of re-implementation.
The automatic categorization of new data examples on basis of a correctly cat-

egorized data set is commonly realized by the approach of supervised learning,
also denoted as classi�cation. This approach is also utilized in this thesis. The
target is to design a classi�cation approach, which is capable of learning the tag-
based categorization habit of a speci�c micro-blogging user so that new, not tagged
micro-blogging entries of this person can be classi�ed correctly with tags this user
has created before.
The �rst basic challenge to be tackled in this direction is the problem of multi-

label classi�cation. While classical classi�cation approaches do only allow a single
label, considered a tag in the framework of this thesis, to be predicted for a new
example, tagging systems feature the assignment of an arbitrary number of tags.
Research literature in the area of multi-label classi�cation is still sparse, although
this problem environment is getting more and more evident during the past years.
The most common approach to tackle the multi-label problem is to transform it

5

Chapter 1. Introduction

into an equivalent single-label task in order to use existing classi�ers. This method-
ology is also featured in the presented thesis.
The targeted web service environment involves a second challenge to be tack-

led in this thesis: In classical supervised learning environments, a batch learning
approach is utilized. A classi�er is trained once on a basis of a well-de�ned data
set, to be then used without further adjustment. However, the tagging behavior of
users of micro-blogging systems is expected to evolve over time, caused by breaking
news, seasonal events and general change of interest. Furthermore, the desired web
service is not expected to be solely used by long-term users, so that a su�ciently
large set of data to train the classi�er may not be available from scratch.
For these reasons, an anytime algorithm is desired to solve the classi�cation

task, so as to classify new examples already in an early training stage without
fully completing the training of the classi�er. The developed approach should also
support adjustment of the classi�er to conceive drift over time, so as to react on
changing tagging behavior. One approach in this direction, which is featured in
research for the past years, is classi�cation on basis of a stream data model. Instead
of modeling the data, a classi�er works with a single stable database, and examples
are considered as a constant stream of data. The presented thesis develops such a
stream based classi�cation approach.
In summary, the goals of this thesis can be described as follows:

1. Evaluation and selection of a feasible method to tackle the problem of multi-
label classi�cation in order to perform tag-prediction in micro-blogging sys-
tems.

2. Integration of the developed classi�cation approach into a stream based data
model, in order to tackle classi�er adjustment over time.

1.3. Structure

The subsequent content of this thesis is structured as follows:

Chapter 2 presents a detailed problem analysis in respect to tagging in the micro-
blogging environment. Furthermore, the goal of this thesis is de�ned more
speci�cally, a motivating use-case is presented and related literature is sum-
marized.

Chapter 3 develops a vector representation for micro-blogging entries and tag
sets, to apply machine learning techniques to this kind of data. Further-
more, this chapter evaluates di�erent multi-label transformation techniques
and selects a feasible one for the underlying problem. In addition to that,
the selected transformation approach is enhanced by a custom technique to
reduce the number of generated labels and the designed multi-label system
is empirically evaluated.

6

1.3. Structure

Chapter 4 selects and describes the three classi�cation methods from the stan-
dard repertoire of machine learning and develops the custom supervised
learning approach on basis of kNN and a condensed model representation.
Experiments in this section evaluate the feasibility of these four approaches
to solve the problem of tag-prediction in micro-blogging systems, on basis of
the developed multi-label transformation technique.

Chapter 5 is dedicated to embedding the two classi�cation approaches yielding
the best classi�cation quality into a stream data model. Two basic stream
classi�cation approaches are developed and evaluated on an empirical basis,
in order to analyze their feasibility to solve the desired problem.

Chapter 6 concludes this thesis with summarizing the yielded results and propos-
ing topics for future research in the direction of tag-prediction in micro-
blogging services and the machine learning approaches developed throughout
this thesis.

7

Chapter 2

Problem Domain

With the Web 2.01 movement, which denotes the migration from a content-centric
to the user-centric web, tagging has become a well-established way for categorizing
items through user assigned keywords and short descriptions. This concept is also
widely used in the recently popular area of micro-blogging, where users provide a
constant stream of status updates from their everyday life.
However, the concept of tagging involves several issues, which are to be tackled in

the underlying thesis, with methods of machine learning and data mining. In order
to get an insight into the problem area, the following Section 2.1 gives a detailed
introduction into the concept of tagging, including a formalization and a detailed
analysis of the problems to be solved within this thesis. After that, Section 2.2
gives an overview of micro-blogging and compares it to general blogging. Finally,
Section 2.3 presents a use case for the tag prediction system developed within this
thesis and derives concrete goals for the subsequent chapters.

2.1. Tagging

Tagging is a common way to realize user-based categorization of content items in
Web 2.0 applications, e.g. social networks. A tag is a keyword or very short descrip-
tion for an item, categorizing its content. In contrast to classical categorization,
tags are free form and can be de�ned arbitrarily by the users of an application,
instead of being professionally edited. Users can typically assign an arbitrary num-
ber of tags to their own content; in most applications also to content published by
other users. Applications typically make use of tags for the purpose of information
retrieval: For example content search, recommendation of similar content items
and content navigation.

2.1.1. Tags vs. Categories

Although the concepts of categorization and tagging appear quite similar at a �rst
glance, there are signi�cant di�erences involved.

1http://oreilly.com/web2/archive/what-is-web-20.html (2010-05-21)

9

Chapter 2. Problem Domain

Categories

The classical way to bring structure into a set of items is to assign each of them to
one or more well-de�ned categories. Categories themselves are commonly organized
in terms of a Taxonomy, a hierarchical classi�cation scheme, re�ecting supertype-
subtype relationships through its structure. A typical category tree is visualized
in Figure 2.1. Categories get more special from top to bottom.

Item

Fruit Event

Apple Banana Conference Concert

Figure 2.1.: Visualization of a category tree.

From a user's point of view, a category collects items that share one or more
attributes and can therefore be considered similar. The category tree of a system is
usually created by a dedicated team of editors, in order to ensure certain properties:
Children of a speci�c category should share a common granularity, i.e. child

nodes should divide the elements of the parent category by values of the same set
of attributes. It does, for example, not make sense to have the parent category
fruit with sub-categories apple and red banana from Papua New Guinea on the
same level. The latter sub-category is much more speci�c than apple.
Leaf categories with the same parent should commonly be non intersecting, i.e.

a fruit should either be an apple or a banana. A category label should describe the
shared aspects of contained items and should provide objective semantic value on
its own or at least in relation to its parent category and the underlying system.
For example, the category apple is ambiguous on its own. Considering its parent
category, fruit, it becomes clear that apple does not denote the IT company in this
case.
Before tagging became popular, it was already common in web applications that

users categorize items they created. However, it was typically not possible for users
to edit the structure of the taxonomy itself.

Tags

While tags ful�ll a similar purpose and have a similar appearance than categories,
they are fundamentally di�erent: Tags are arbitrarily created and assigned by

10

2.1. Tagging

the users of an application, without in�uence of professional editors. There is no
hierarchical structure implied and the set of tags used in an application can be
highly dynamic. The terms fruit, banana and apple can for example be tags, but
so can be I like this and IPC2010SE.
Since users are not educated to design tags with the properties that are ex-

pected to hold for categories, several di�erences exist between both types of item
classi�cation.
Tags vary extremely in terms of granularity and item sets de�ned by tags can

have arbitrary intersection. Due to the missing structure, requirements in terms
of intersection do not even make sense for tags at all. Additionally, the semantic
value of tags varies highly, depending on the user's social background, educational
level and interests.
These characteristics of tags are also re�ected in the commonly used visualization

form: A tag cloud (Figure 2.2). Tags are placed arbitrarily, introducing the missing
structure. The font size of a tag re�ects the number of items this tag is assigned to.
The varying granularity of tags can be seen here. It can generally be noted, that
tags often imply very few semantics on their own, without taking the assigning
user or another special context into account. Therefore, tags can be ambiguous
and misleading.

Apple banana herbaceous orange

fruit Linux Windows FreeBSD

I like this sunset like college

Figure 2.2.: A tag cloud. Font size indicates popularity.

Examining the example tags presented at the beginning of this section one can
observe the following concrete problems:

apple This tag is ambiguous. It is not clear if it refers to the fruit or the IT
company, due to missing context, e.g. through a parent category.

IPC2010SE Without a given context, this tag does not provide any intuitive se-
mantic value. The background here is, that it is a common abbrevi-
ation for �International PHP Conference 2010 Spring Edition�.

I like this This tag does not provide any objective semantic value. It is highly
user-speci�c, since it does not imply a shared attribute for its assigned
items if the assigning user is unknown.

11

Chapter 2. Problem Domain

2.1.2. Formalization

As categories are commonly de�ned in terms of a taxonomy, tagging systems are
de�ned as a folksonomy, which is a portmanteau, combining folk and taxonomy.
A formal speci�cation of a folksonomy is for example given by Jäschke et al. in
[JMH+07], as shown in De�nition 1.

De�nition 1 (Folksonomy):
A Folksonomy is a tuple F = (U, T,R, Y) where

• U, T,R denote �nite sets of users, tags and resources.

• Y denotes the relation between users, tags and resources, i.e. Y ⊆ U×T×R.

A tuple (u, t, r) ∈ Y is interpreted as the user u tagged resource r with tag t.

Because this thesis has a user-centric view on tagging, i.e. the tag recommen-
dation should take place on a speci�c user's previous tagging behavior, only the
projection to Yu ⊆ T × R of the folksonomy relation is used. That means, only
the items tagged by a speci�c user are taken into account together with the tags
assigned by this user.

2.1.3. Issues in Tag Systems

Due to their nature, tags imply several issues, which a�ect applications based on
them. The most signi�cant issue consists of items that are not tagged at all. Such
items cannot be taken into account by the application, e.g. they do not show up
in tag based searches and cannot be recommended on a basis of tags. Users can
hardly be forced to assign tags anyway without being annoyed by the application.
If the application does not allow tagging of items by foreign users or the addition of
tags after an item has been published, such items are not useful at all to tag-based
applications. Micro-blogging systems typically su�er from these problems, since
they neither allow users to tag foreign users status updates, nor do they provide a
possibility to add tags to an entry that has already been published.
Very few occurrences of a certain tag imply a second issue. Such tags can hardly

be used for recommendation purposes and deliver very few results when being
searched for. The reasons for little usage of a tag are multifarious: The user might
have misspelled a tag, the tag might contain a very uncommon abbreviation or
synonym, or its context might be too speci�c to the user and his/her environment.
A third issue is implied by the lack of objective semantics of a tag. As shown

in the examples in Section 2.1.1, the tag apple is ambiguous and misses unique
semantics. It is hardly possible to produce good precision search results for this tag,
since it is not clear which meaning the user implies. Searches and recommendations
based on the tag I like this are even worse if the user's preferences cannot be

12

2.2. Blogging and Micro-Blogging

taken into account. However, the tag recommendation system developed within
this thesis only tackles the �rst and second issue.

2.2. Blogging and Micro-Blogging

Although being popular before the term Web 2.0 was actually de�ned, web-logging
(blogging) is commonly considered being a part of this movement, which leads
from a content-centric to a user-centric web approach. In a web-log (blog), one or
more authors publish small to medium sized articles around a certain topic. The
articles are presented in form of a single stream, in reverse chronological order.
Micro-blogging is a very new variation of blogging, which limits the size of a

blog entry to 140 characters. Users commonly use micro-blogging to provide status
updates and commentary. As with many applications in the Web 2.0 area, blogs
and micro-blogs typically make use of tagging for the purpose of structuring their
content.

2.2.1. Blogging

A blog is a special type of article-based website, which is typically maintained by
an individual or a small crew of authors. In contrast to other website types, blogs
consist of a continuous stream of articles presented in reverse chronological order.
There is typically very little additional structuring in a blog, i.e. no navigation.
The published articles typically consist of commentary, announcements, or reports.
Blogs dedicated to content types other than text, such as audio blogs (commonly
known as podcasts) and video or image blogs, also gained popularity in the past
years, but are beyond the scope of this thesis. The major aspects of a blog can be
summarized as follows:

• The content is generally presented as a stream of articles in reverse chrono-
logical order.

• Articles are categorized regarding their content, typically through the
method of tagging.

• Readers have the possibility to discuss the content by adding comments to
an article.

• The provided content is readily encoded into an XML format to be aggre-
gated by so-called feed readers, in addition to the normal HTML represen-
tation.

The software for maintaining a weblog usually provides rich editing features,
similar to CMS (content management systems), as well as media management

13

Chapter 2. Problem Domain

facilities. It is common for technically experienced users to host blog software in
a dedicated web space, or else to have a weblog account at a specialized provider
such Google's Blogger.com2.

2.2.2. Micro-blogging

While weblogs are by now a well-established way for content publishing on the
web, which has been adapted by companies and even news press, quite a new
movement is the so-called micro-blogging. Where normal blogs may contain articles
of arbitrary length, micro-blog entries are strictly limited to a certain maximum
length, commonly 140 characters. Furthermore, micro-blogs are integrated as a
social-network instead of being hosted independently. Although being invented as
standalone social networks, established services such as Facebook3 and the German
StudiVZ4 adopted the concept rapidly and make micro-blogging more and more
popular among mainstream users.
Micro-blogging satis�es the need of more and more people for being constantly

online and sharing more and more information about their life. Users mainly post
notes about their daily life, commentary and links to articles, images and videos.
In addition, micro-blogging platforms are used for discussion. There is typically no
dedicated mechanism for commenting on a post. Instead, a new post is used for
that purpose, mentioning the name of the user replied to.
A micro-blog post consists only of plain text, without additional markup. Ser-

vices typically annotate entries automatically with the creation date and optional
geo-location information. As with blogging in general, entries are available in re-
verse chronological order, i.e. the newest post is presented �rst. A collection of en-
tries is commonly called a timeline or micro-blog stream or feed. Figure 2.3 presents
an extract of such a time line for a speci�c user on the Twitter5 micro-blogging
service. Shown are three so-called Tweets in the HTML based web interface of
Twitter.
Beside the basic feature of maintaining a micro-blog, services for that purpose

o�er typical social network features: Users create a pro�le page, which may contain
additional information about the user. Social relations can be re�ected by following
other users on the platform. In contrast to typical social networks, this relation
does usually not require con�rmation by the related user. Following other people
allows a user to gain a merged timeline of their micro-blog entries.
While blog posts are often meant to provide objective value to the reader, e.g. a

technical tutorial, the content of micro-blog posts is highly speci�c and subjective

2http://blogger.com (2010-05-21)
3http://facebook.com (2010-05-21)
4http://studivz.net (2010-05-21)
5http://twitter.com (2010-07-11)

14

2.2. Blogging and Micro-Blogging

Figure 2.3.: Three Tweets on Twitter.

to the user. Users write on anything a�ecting their daily life, be it work related,
their hobbies, trivial occurrences or instant thoughts and feelings.
While micro-blogging platforms provide a web interface for authoring and read-

ing entries, users typically use special client software to perform these tasks. There
is a vast variety of client software available for all operating systems. Due to the
success of mobile internet connections, people use micro-blogging wherever there
go, through client software on their cellphones or other mobile devices. An example
of such a client application is Seesmic6, which is available for Apple and Android
mobile devices, but also as a desktop version for Linux, Windows and others, and
as a web application in addition.
It can be noticed that tags in micro-blogging are even more user-centric than

in other areas. People do not necessarily use tags similar to their associates. With
changing interests, living conditions or breaking news, the tagging behavior of a
user might change heavily.

2.2.3. Twitter

Twitter was the �rst micro-blogging service available and still is the market leader
in the segment of dedicated micro-blogging providers. The service faced worldwide
rapid growth of its user base during the past three years (see Figure 2.4) and, beside
the native English speaking countries, grew especially strong in Brazil, Germany
and the Netherlands.
Twitter o�ers only very rudimentary micro-blogging and social networking facili-

ties. The micro-blogging entries on Twitter cannot be annotated with tags natively,
nor can other users be referred. For that reason, Twitters early adopters developed

6http://seesmic.com/ (2010-07-11)

15

Chapter 2. Problem Domain

Figure 2.4.: New Twitter users by countrya.

ahttp://www.sysomos.com/insidetwitter/ (2010-07-11)

a rudimentary markup syntax for these purposes, which encodes both information
into the plain text content of an entry:

• Tags are pre�xed by the # character. Any word of an entry can become a tag
that way, if it is already part of the content or appended to it for tagging
reasons.

• To refer to another user, her user name is used, pre�xed by the @ character.

Examples for both syntaxes can be seen in Figure 2.3. As can be derived from
the highlighting of tags and user references in the shown example, Twitter nowa-
days supports theses techniques. However, there is still no dedicated data structure
or editing facility for it, but Twitter relies on the user invented syntax. It is im-
portant to note, that micro-blog entries on Twitter cannot be edited. Therefore,
the addition of tags to a once created entry is not possible. Additionally, only the
authoring user can assign tags to his/her post, there is no possibility for foreign
users to assign tags.

A data set extracted from Twitter is used for experiments throughout this the-
sis. The data extraction process is explained in further detail in Appendix A.
Furthermore this appendix provides a basic statistical analysis of the data set.

16

2.3. Objectives

2.3. Objectives

The global goal of this thesis is to develop a tag recommendation service for micro-
blogging systems. Section 2.1 and Section 2.2 already introduced the concepts
of tagging and micro-blogging. In the following, the objectives of this thesis are
examined in further detail.
The next Section 2.3.1 presents a use case to show how a real-life implementation

of the desired tag recommendation system could work. After that, the actual goal
is verbalized and formalized in Section 2.3.2. Finally, Section 2.3.3 summarizes
related research.

2.3.1. Use case

A common approach for mitigating the problems involved with tagging systems
(see Section 2.1.3) is to assist the user with the process of tagging. To achieve
this, the GUI (Graphical User Interface) used for tagging is commonly enhanced
by a mechanism to select recommended tags. In the web environment, such an
enhancement can be achieved through a list of tags, where a tag can be added to
the created content item by clicking it.

Figure 2.5.: Mock up: Twitter GUI with tag recommendation. Below the text
box for posting new entries, two recommended tags are displayed. If any of
these is clicked, it would be added to the entry.

Figure 2.5 shows a mock up of the Twitter GUI for creating a new micro-blogging
entries, enhanced by such a mechanism. Below the original text box, two tags
are recommended for the status update just being created. In this scenario, the
user could click on any of these tags, so as to apply it to the post. For the �rst
recommendation, a word already contained in the text would become a tag. The
other tag would be appended at the end of the text.
Ideally, a realization of a tag recommendation system would neither depend on a

particular micro-blogging client nor on a speci�c micro-blogging service. Therefore,
implementation as a web service would be appropriate. Client software could then
integrate tag recommendation without implementing the necessary algorithms on
its own. Furthermore, the recommendation mechanism itself would be available to
any micro-blogging user, independently from the actual service he/she uses. Figure

17

Chapter 2. Problem Domain

2.6 visualizes the process of micro-blogging involving a tag recommendation web
service.

Figure 2.6.: Tag recommendation with a web service. The user just interacts
with his/her favorite micro-blogging client. This software needs to integrate
with the tag recommendation service in addition to the already available
micro-blogging service.

The user only interacts with his/her micro-blogging client of choice. This can
either be the HTML interface of a micro-blogging service, or a third party appli-
cation. As the user �nishes typing a new entry, the client �rst submits it to the
tag recommendation service. The service returns a set of recommended tags for
the post in question. Now the user may select an arbitrary number of these recom-
mended tags or add further ones manually. The client software is responsible for
integrating selected tags into the post. Once �nished, the client submits the entry
to the micro-blogging service. In addition to that, the entry must be submitted to
the tag recommendation service again. This way, the service can adjust to changes
in the user's tagging behavior and try to optimize recommendations for subsequent
posts.

2.3.2. Goal

From the preliminary considerations of tagging problems and the use case described
in Section 2.3.1, the goal of this thesis can be derived:

18

2.3. Objectives

Develop a user-centric system for tag recommendation in micro-
blogging environments, which can be used in a web service for
integration with arbitrary micro-blogging clients and services.

This goal basically implies the task of classi�cation, which can be de�ned as
shown in De�nition 3. For convenience reasons, De�nition 2 �rst gives the de�nition
of an example, also denoted as a data point, which is then used in subsequent
de�nitions.

De�nition 2 (Example):
An example e := (~x, l) is a tuple consisting of a feature vector ~x ∈ X , with X := Rd

being the feature space, and a label l ∈ L, where L is a �nite set of labels. A set of
n examples E := {e1, . . . , en}, is called an example set.

The possible values for a label l, i.e. the elements of L, are commonly denoted
as classes. In di�erent cases throughout this thesis, only the feature vector of an
example needs to be referred to. Depending on the speci�c case ~x is used, if the
the full example and its feature vector need to be distinguished, or e is meant to
denote the feature vector, if its clear from the context.

De�nition 3 (Classi�cation):
Given an example set E = {(~x1, l1), . . . , (~xn, ln)}. A classi�cation function

h : X → L

is to be learned, such that h(~xi) = li, for all (~xi, li) ∈ E.

A classi�er h is meant to assign the correct label to a new, unseen example,
for which the true label is unknown. The procedure of training a classi�cation
function is also commonly referred to as supervised learning. This basic task is
re�ned further in the following, based on the requirements that apply to the tag
recommendation system to be developed throughout this thesis.

Multi-label classi�cation

The targeted system must be able to predict tags for a new micro-blogging entry
by a speci�c user. As de�ned by the classi�cation task, this prediction is to be
learned on the basis of existing examples, i.e. the micro-blogging entries written
in the past.
The standard classi�cation task only de�nes a single label per example, where

the concept of tagging allows an example to have an arbitrary number of labels (i.e.

19

Chapter 2. Problem Domain

tags) assigned. Such an environment is commonly de�ned in terms of a multi-label
classi�cation task, for example in [TK07]. In the scope of this thesis, multi-label
classi�cation is mainly de�ned by varying the speci�cation of an example to a
multi-label example, as speci�ed in De�nition 4.

De�nition 4 (Multi-label example):
A multi-label example e = (~x,M) is a tuple consisting of a feature vector ~x ∈ X
and a set of true labels M ⊆ L, where L is a �nite set of labels.

Again, the components of a multi-label example can be referred dedicatedly by
the same notation as described for single-label examples (De�nition 2). The multi-
label classi�cation task can then be de�ned analogous to the standard classi�cation
task. The formal speci�cation is given in De�nition 5.

De�nition 5 (Multi-label classi�cation):
Given a set of multi-label examples E = {(~x1,M1), . . . , (~xn,Mn)}. A classi�cation
function

h : X → P(L)

is to be learned, which maps the feature vector of each example to its true set of
labels, i.e. h(~xi) = Mi for all (~xi,Mi) ∈ E.

While the task of multi-label classi�cation has become more and more common
in the past years, mainly due to tagging systems, literature in this area is sparse.
Section 3.2 selects a technique for tackling the multi-label classi�cation problem
through a transformation into a semantically equivalent single-label classi�cation
task.

Anytime

Micro-blogging entries are produced as a continuous stream of examples. In order
to be able to predict tags only the micro-blogging entries previously written by
a speci�c user are available as training data. If a user only started with micro-
blogging only recently, this training data is expected to be not su�cient to train a
high-quality classi�er. Furthermore, it is expected that tagging behavior of a user
changes over time, which commonly denoted as a concept drift (see e.g. [WK96]).
Both circumstances require to update the tag prediction classi�er over time.
The desired behavior can be described in terms of an anytime algorithm, which

is capable of performing a prediction, although its model is not yet �nished. It
is possible to achieve such a behavior by storing all micro-blogging entries of a
speci�c user in a data base on the web service and to re-train the classi�cation
model in batch learning manner on the full collected training data. However, this

20

2.3. Objectives

would consume quite some computation time on every update and would not honor
the expected change in tagging behavior.
It is therefore desired to use a stream data model for recurrent updates of the

classi�cation model. Stream models do not interpret data as a single large batch,
but as a constantly updating stream of examples. Stream models are a recent
topic of research and are generally used in cases where the size and velocity of
data exceeds storage and computation facilities. It has to be noted, that neither of
these conditions is ful�lled in the environment of this thesis: Although users might
produce several micro-blogging entries per day, this update frequency is still low
compared to typical stream problem environments as, e.g. tackled in [str02] and
[BJC+04].
A goal of this thesis is therefore the evaluation, if stream based classi�cation

is a possible way to perform tag prediction in micro-blogging services. The major
objectives here are to provide a classi�cation model on basis of very few data,
so that tag prediction can take place even with few user data available and to
update the classi�cation model over time, as more data is produced. Furthermore,
it should be attempted to check for changes in the tagging behavior of a user, in
order to adjust the classi�er correspondingly.
In order to consider consider examples in form of a stream, De�nition 6 formally

speci�es the data stream model utilized in this thesis.

De�nition 6 (Data stream):
A data stream is a �nite or in�nite set of examples S = {e1, . . . , en, . . . }, which
are sorted in an ascending, typically temporal, order ≺S, such that

∀ei, ej ∈ S : i < j ⇒ ei ≺S ej

holds.

Modelling of the typical constraints of data streams, e.g. that an algorithm
must not access data randomly but only has access to a certain portion of data
at a given point in time, takes place in Chapter 5, where the evaluation of stream
classi�cation is tackled.

2.3.3. Related work

There has been quite some research in the �eld of tag recommendation systems
in the past years. This section attempts to give an overview on some popular
approaches, but is not intended to be exhaustive. It can generally be noted that
research so far has concentrated on the recommendation of tags through the social
aspect of tagging systems, i.e. tags for an information item are predicted through
tags that other users had already assigned to this item. This approach, however, is

21

Chapter 2. Problem Domain

generally not feasible for the environment of micro-blogging, since a newly created
entry cannot have been tagged already by other users.
The ECML PKDD 2008 discovery challenge featured a tag recommendation

task7. The goal was to develop a system for tag prediction for the BibSonomy data
set. Three submissions were received, but none of them achieved an F1 score better
than 0.2. Most of the system relied on completely heuristic approaches while only
the paper by Katakis et al. involved a formal learning approach [KTV08]. They
used the Binary Relevance classi�er as the basis, which internally uses a Bayes
learner. ECML PKDD 2009 featured two similar challenges without signi�cant
improvements regarding the F1 score results of the proposed approaches.
In [SOHB07] Sood et al. introduce a case-based reasoning approach for tag

recommendation in blog systems. They basically index all contents of a blog using
a search engine like Lucene8. For a newly posted blog entry, they retrieve related
entries from the search engine and predict the most common tags among them.
While this approach is described to be fast, it su�ers from two problems regarding
the objectives of this thesis: Firstly, the search index does not automatically adjust
to changes in tagging behavior. Secondly, a search engine is expected to yield
over�tted results on short text as they occur in the environment of micro-blogging.
Heymann et al. concentrate on social tag prediction in [HRGM08] and attempt to

asses rules on when a tag is predictable or not. However, since they concentrate on
predicting tags on basis of the full community database, their prediction approach
is not feasible for the underlying case, because for a new micro-blogging entry
there are no tags by other users available. Similarly, this applies to the work of
Jäschke et al. [JMH+07] and related work, since they base tag prediction on the
full folksonomy relation.

7http://www.kde.cs.uni-kassel.de/ws/rsdc08/ (2010-05-24)
8http://lucene.apache.org (2010-07-11)

22

Chapter 3

Data Preparation

As has already been noted in Section 2.3.2, the problem of tag prediction in micro-
blogging is a multi-label classi�cation task: An arbitrary number of labels, i.e. tags,
can be assigned to each example. The target of this thesis is a system which can
recommend a set of tags for a new, unlabeled micro-blogging entry, based on a
users previous tagging behavior.

Although the multi-label environment becomes more and more popular, research
literature in this area is still sparse. The most common approach is to transform
the multi-label problem into a single-label variant. Such a transformation typically
involves at least one of two steps: Firstly, the multi-label data set has to be pre-
pared, e.g. by decomposing examples with multiple labels. Secondly, one or more
single-label classi�ers are adjusted or combined, e.g. by learning multiple binary
classi�ers in a one-against-all manner.

In this chapter, several such transformation approaches are described and evalu-
ated for their feasibility, to be used in the environment of tag prediction in micro-
blogging systems.

The next Section 3.1 derives a representation for micro-blogging entries and
tags, which is feasible for the application of machine learning and data mining
techniques. The term vector model is selected here, while vector weights are de�ned
by the binary occurrence measure.

After that, Section 3.2 discusses di�erent transformation methods for the multi-
label problem implied by tagging. The power set transformation method is selected
as the most feasible approach and experiment results are presented in order to show
its feasibility. However, this technique still does not yield outstanding classi�cation
quality using several di�erent classi�cation methods (kNN, Naive Bayes and SVM).

Therefore, a technique to reduce the number of labels generated by the power
set method is developed in Section 3.3.3. It is predicted, that this step can raise the
classi�cation quality in general. A detailed evaluation of the developed approach,
together with details on the utilized classi�cation methods, is presented in the next
Chapter 4. In addition, a custom classi�cation method is developed and evaluated
there.

23

Chapter 3. Data Preparation

3.1. Data Representation

To apply methods of machine learning and data mining to micro-blogging entries,
these have to be brought into a feasible representation: A vector representation is
desired. The discipline of text mining deals with the problem of representing textual
information in an appropriate way. Beside the representation for blog entries, a
representation for tags assigned to a blog entry is required too.

3.1.1. Vector Generation

The basic task to be solved is to generate vector representations from a set of
text documents. Such a set of documents is commonly referred to as the document
corpus or text corpus.

De�nition 7 (Document corpus):
A document corpus D is a set of text documents D := {d0, . . . , di}. Documents
are reprsented in terms of the bag of words model as a set of terms, i.e. d :=
{t0, . . . , tn}.

In the underlying case, the document corpus consists of the micro-blogging en-
tries by a speci�c user. Note that punctuation is omitted in the bag of words
model, which is e.g. mentioned in [Joa97a]. On this basis, two representations for
text content are discussed in following: The vector space model and the encoding
through n-gram vectors. After that, a feasible representation is chosen, which is
used throughout this thesis (Section 3.1.1).

Vector Space Model

The vector space model was developed by Salton et al. in [SWY75]. It de�nes the
encoding of a text document based on its contained terms, i.e. words. In terms of
machine learning, each word becomes a feature attribute. In order to generate a
term vector, each document is interpreted as a bag of words, ignoring the semantic
structure and punctuation of the document.

De�nition 8 (Vector space model):
Given a text corpus D with documents d ∈ D represented as bags of words. The
set of all terms T =

⋃
d∈D d is called the vocabulary of the corpus. By bringing an

arbitrary order to the vocabulary, it is used to de�ne an Euclidean feature space
X = R|T |, where each dimension corresponds to a term t ∈ T . A document dj is
encoded as a vector in this space as

~dj := (t0,j, . . . , tk,j)

where tl,j is non-zero, if tl ∈ dj.

24

3.1. Data Representation

Di�erent approaches exist to determine which terms are taken into the vocab-
ulary T and how the vector values are calculated. The most common ones are
to selecting all words from all documents or to choose specially signi�cant index
terms. In order to determine the term vector weights, one of the following three
measures is commonly chosen (e.g. [HMS02]):

Binary occurrence is the simplest weight, where a dimension is set to 1 if the
corresponding term occurs in the document, 0 is set otherwise

Term frequency weights each dimension with the number of occurrences of the
corresponding term in the document

TF/IDF represents a global signi�cance measure, presented in De�nition 9.

De�nition 9 (TF/IDF measure):
For a term tl in a document dj ∈ D, the TF/IDF measure is de�ned as

tl,j := tfl,j · log(
n

dfl
)

where tfl,j denotes the number of occurrences of term tl in document dj (term
frequency) and dfl is the number of documents in which tl occurs (document fre-
quency).

The mathematical term log(n
dfl

) is also known as the inverse document frequency.
The TF/IDF measure is typically chosen in information retrieval scenarios.

n-Gram Vectors

A second solution for encoding plain text documents into a vector representation is
the use of n-grams. This approach is typically utilized in natural speech processing,
e.g. [MM04]. n-grams can be created from sequences of arbitrary items, e.g. micro-
blogging entries as sequences of characters. A n-gram is a sub-sequence of length
n from such a sequence. For the creation of a vector representation, each n-gram
from a document corpus is taken as a dimension of the vector space (formalized in
De�nition 10).

De�nition 10 (n-gram vector encoding):
Let D be a text corpus. Each document d = x0 . . . xk consists of a sequence of
characters xi from a �nite alphabet K. An n-gram is de�ned as a sub-sequence
of consecutive characters gnk := xkxk+1 . . . xk+n, where n is the cardinality of the
n-gram and k denotes its starting position.
To encode a document corpus through n-grams, each document d ∈ D is rep-

resented as its set of n-grams g(d) := {gn0 , gn1 , . . . }. In order to create a vector

25

Chapter 3. Data Preparation

space, the set of all possible n-grams G :=
⋃
d∈D g(d) is brought into an arbitrary

order. Each n-gram g ∈ G refers to a dimension in X = R|G| and the vector
representation of a document dj ∈ D is de�ned as

~dj := (g0,j, . . . , gk,j)

where gi,j becomes non-zero, if gi ∈ g(dj).

The n-gram encoding can be interpreted as sliding a window of length n over a
sequence of items. Each step of the window creates an n-gram.

Representation Selection

The vector space model has been chosen to encode micro-blogging entries and
their sets of tags into vector representations. Since tags are words or abbreviations,
which occur in the plain text content of a micro-blogging entry, any term has a
high potential for being chosen as a tag. Choosing the n-gram representation would
eliminate this potential correlation. Furthermore, the extraction of tags is a simple
task during word vector creation.
The set of tags assigned to an example, M , is also represented as a term vector

on the tags occurring in the document corpus. A micro-blogging entry is therefore
represented as a tuple e := (~x, ~m), in the notion of a multi-label example. ~x is the
term vector of the full micro-blogging entry and ~m is the term vector of the tags
contained in the entry. In following, the bag of words representation x, respectively
m, and the corresponding vector representation ~x and ~m are used interchangeably.
To determine the vector weights, the binary occurrence measure has been se-

lected. The TF/IDF measure is not suitable in the underlying case since the de-
veloped tag prediction technique should be based on a data stream model (see
Chapter 5). TF/IDF cannot be calculated reliably in this scenario since it involves
the global occurrence count of a term. Furthermore, the term frequency measure
also appears to be unfeasible for the underlying case: It seems unlikely that a term
occurs twice or more times within a micro-blogging entry with its limited length
of maximum 140 characters. Stop words might be an exception here, but it is gen-
erally not intended to weight these higher due to their more frequent occurrence.

3.1.2. Pre-Processing

In order to create term vectors, micro-blogging entries are tokenized. The technique
of tokenizing originates from the discipline of compiler construction, for which ex-
tensive information can be found in [ASU86]. The developed system uses a simple
tokenizing step, splitting the document text at any sequence of non-alphanumeric
characters, except for the # character, which denotes a tag. Since any term in a

26

3.2. Multi Label Transformation

micro-blogging entry can become a tag, tags are not only added to the correspond-
ing vector ~m, but also to the feature vector ~x.
One crucial issue in text mining is the large number of dimensions in feature

implicit in the processing of text and the resulting problems, commonly known
as the curse of high dimensionality. Experiments on example data extracted from
the Twitter web service have shown that more than 8000 di�erent terms can be
contained in the vocabulary of a user. While this number is already low compared
to other text mining scenarios (e.g. [BEX02]), the number of dimensions can be
signi�cantly reduced by di�erent pre-processing steps. The following sections give
an overview of the pre-processing steps chosen for this thesis. The selected pre-
processing steps are commonly used in the area of text mining, e.g. in [TBHG00],
[YP97] and [DC00].
Basic statistical analysis of the term-vectors generated from micro-blogging en-

tries can be found in Appendix A.

Lowercase Conversion

In western languages, the same word can start with a capital letter or not, de-
pending on its position in a sentence. In order to avoid separation of semantically
equivalent words, all terms are converted to lowercase as a pre-processing step.
Experiments have shown that the number of unique words can be reduced by up
to 40% this way.

Stemming

Stemming denotes the process of reducing an in�ected word to its stem, the root
form. The porter stemming algorithm [Por80] is one of the most commonly used
stemming algorithms for English words. It is therefore used for pre-processing
tokens generated from micro-blog entries. A further reduction by up to 10% has
been achieved using this technique.

3.2. Multi Label Transformation

A fundamental problem involved in the prediction of tags is the multi-label nature
of the task, as has been already been noted in Section 2.3.2. Tagging systems allow
the user to assign an arbitrary number of labels to each item. Experiments have
shown that the use of more than one tag per micro-blogging entry is not rare:
On average, 18.92%± 14.57% of tagged micro-blogging entries have multiple tags
assigned (details in Appendix A). Therefore, the desired recommendation system
needs to be capable of learning such multi-label associations and to recommend
sets of multiple labels for new examples.

27

Chapter 3. Data Preparation

While a vast variety of classi�cation algorithms exist for the single-label / multi-
class environment, literature on multi-label classi�cation is sparse. Tsoumakas and
Katakis summarize common approaches to the multi-label problem in [TK07].
They basically conclude that the most common approach is a transformation of the
problem into a single-label classi�cation task. Even most approaches for adjusting
a single-label classi�cation algorithm to the multi-label environment inherently
perform such a transformation.

3.2.1. Transformation Methods

In the scope of this thesis, di�erent multi-label to single-label problem transforma-
tion methods have been evaluated in respect to their feasibility for the underlying
problem. A summary of this evaluation is presented in the following. For illus-
tration purposes, the sample multi-label data set visualized in Table 3.1 is used
throughout the evaluation. The data set consists of four examples, which have up
to three labels assigned. For simplicity, the feature vectors of the examples have
been left out.

ID #php #database #university

1 X X

2 X X

3 X

4 X X X

Table 3.1.: Example multi-label data set.

Two requirements are leading for the selection of a feasible technique: Firstly, the
transformation should yield a classi�cation model which is feasible to predict a set
of tags for micro-blogging entries at all. Secondly, since the desired classi�cation
approach is expected to be used in a multi-user environment and classi�cation must
not take long, the multi-label transformation should not yield extensive overhead
in computation time.

Information Loss Methods

Mhe simplest approach for transformation of a multi-label dataset into a single-
label one is the removal of multi-label information. Two variants of this approach
are possible:

• Removal of all examples which have more than one label assigned.

28

3.2. Multi Label Transformation

• For each multi-label example, discard all labels except for one.

These techniques might be feasible in cases where multi-label examples are out-
liers and most data in the analyzed data set is only of single-label nature. However,
this situation is not given in the underlying case.

Power Set Method

The power set method attempts to convert the each label set into a new distinct
label, which means a transformation from a multi-label into a single-label data set.
This transformation can be formalized as a classi�cation function

h’ : X → L′

h’(~x) :=
∧
l∈h(~x) l

For example, the label set {a, b} is replaced by the new label a∧b. The transformed
label set is therefore de�ned as in terms of the new label set

L′ := {
∧
l∈M

l|M ∈ P(L)}

The transformed example data set is shown in Table 3.2.
Note that the de�nition of the power set method given in this thesis varies

slightly from the one presented in [TK07], for notation reasons: Tsoumakas et al.
de�ne the classi�cation function as

h” : X → P(L)

which con�icts with the general de�nition of multi-label classi�cation given in
De�nition 5 of this thesis.

ID #php #php #php #php
∧ #database ∧ #university ∧ #database

∧ #university

1 X

2 X

3 X

4 X

Table 3.2.: Multi-label data set transformed using the power set method.

Boutell et al. use the power set transformation method in [BLSB04] for multi-
label classi�cation of scene data. In [DTMV05], Diplaris et al. seized the approach

29

Chapter 3. Data Preparation

while evaluating di�erent classi�cation algorithms for motive-based protein classi�-
cation. McCallum used a similar approach in terms of a mixture model to represent
multiple classes assigned to an example in [McC99].
A fundamental advantage of the power set method, compared to other ap-

proaches described in this section, is the fact that only a single classi�er needs
to be trained. Choosing a well performing classi�er, this approach could satisfy
the requirement of only moderate overhead in computation time. The disadvan-
tage here is, that the selected classi�cation algorithm needs to cope with a large
number of classes. Experiments have shown that the number of unique tags per
user highly varies (average 190.6 ± 190.1), but numbers of 300 and up are not
uncommon. It is assumed, that the full power set in such scenarios would be un-
manageable. A statistical analysis of tagging behavior in micro-blogging systems
is presented in Appendix A.

One-Against-All Method

Most commonly used, according to [TK07], is the method of one-against-all clas-
si�cation. Instead of transforming the data set directly, multiple classi�ers are
learned: A binary classi�er of the form

hl : X → {−1, 1}

hl(~x) :=

{
1, if l ∈ h(~x)

0, otherwise

for each possible label. Each such classi�er is then trained with the examples that
have the corresponding label assigned as positive training examples and all other
examples as negative examples. These classi�ers are then combined in a classi�er
of the form

h’ : X → L

h’(~x) :=
⋃
l∈L{l} : hl(~x) = 1

The one-against-all approach is used, for example, by Goncalves et al. to classify
Portuguese juridical documents by concept in [GQ03]. Each document can belong
to multiple concepts there. Lauser and Hotho utilize the method for subject in-
dexing, i.e. describing by the subjects they cover, of documents maintained by the
Food and Agriculture Organization (FAO) of the United Nations (UN) [LH03]. In
[LO03], Li et al. explore the classi�cation of music by emotions, where every song
might re�ect multiple di�erent moods. All three papers use SVM for the binary
classi�ers (see Section 4.1.3 for details on SVM).
An approach quite similar to the one-against-all method is used in ML-kNN

[ZZ07] by Zhang et al. They examine the probability for each individual label for
a new example, based on its k nearest neighbors. Godbole and Sarawagi present

30

3.2. Multi Label Transformation

an enhancement to the usage of one-against-all with SVM [GS04]: To take into
account potential inter-dependencies between labels, they �rst train the typical
binary classi�ers and then append their prediction result to the training vectors.
On that basis, new classi�ers are trained. This technique is commonly known as
stacking.
While the one-against-all method subjectively promises more accurate results

than e.g. the power set method, the approach appears to be quite time consuming.
Experiments identi�ed 190 unique labels on average, resulting in 190 SVM clas-
si�ers to be trained. Since SVM training works in (n3), this combination appears
to be unfeasible. Furthermore, requesting results from 190 binary classi�ers of any
kind can hardly be considered feasible in terms of classi�cation time.

Example Decomposing Method

Tsoumakas and Katakis also mention a not yet explored way of transformation:
Decompose the original example set into a new one, where each example occurs as
many times as it originally had labels assigned, each time with only a single label.
Table 3.3 visualizes the resulting example set. On this basis, they want to learn
a single coverage-based classi�er, which outputs a probability distribution over all
possible labels for each new example.
The fundamental problem with this approach is the selection of a feasible label-

set on basis of its prediction result. A static threshold, e.g. a probability larger
than 0.5, could be a potential solution. However, this value might di�er for each
user and a user-based setting is not feasible for the approach desired in this thesis.

ID label

1 #php

1 #database

2 #php

2 #university

3 #php

. . .

Table 3.3.: Example decomposi-
tion method.

ID label class

1 #php 1

1 #database 1

1 #university -1

2 #php 1

2 #database -1

2 #university -1

. . .

Table 3.4.: Alternative example
decomposing method.

Schapire and Singer propose a boosting based text categorization approach in
[SS00], which utilizes a similar decomposition technique: They generate |L| new
examples for each original example, one in combination with every possible label,

31

Chapter 3. Data Preparation

which is added to the decomposed examples as a normal feature. They then add
a new label attribute, which becomes 1, if the corresponding original label was
originally assigned and −1 otherwise. A resulting example set is visualizes in Table
3.4.
While this approach also decomposes the original example set, Shapire and

Singer do not predict the original labels directly, but perform classi�cation on
an example label combination. They apply Adaboost to weak classi�ers of the
form

h : X × L→ R

to the transformed example set. Two di�erent approaches for the actual classi�ca-
tion are described in [SS00]: In the �rst variant, Adaboost.MH, if a weak classi�er
returns a positive value for a new example x and a label in question l, this label is
taken into the predicted label set. In the second variant, Adaboost.MR, the output
of the weak classi�ers is considered a ranking. In this case, the actual labels for
prediction need to be select from the ranking.
While the Adaboost.MH approach ships around the label selection problem,

both approaches still require as many classi�cations as there exist unique labels to
be performed, in order to perform multi-label classi�cation.

3.2.2. Evaluation

None of the evaluated transformation methods convinced immediately as the ideal
approach to tackle the multi-label problem. Methods which simply discard multi-
label information are not considered feasible due to the degree of multi-label data
in a tagging system. The power set method (Section 3.2.1) occurs to be more
feasible than others, since only a single classi�er is to be trained, which keeps the
overhead in computation time moderate. However, the potentially large number of
generated labels could make this approach unfeasible. Classi�cation on basis of the
one-against-all transformation is generally expected to produce better classi�cation
results, but the pure number of classi�ers to be trained produces a large number
of computational overhead. The example decomposition method depends on a
coverage based classi�er, which inheres similar problems as a ranking algorithm:
Based on the generated distribution, the actually recommended label set must be
selected using a heuristic. Therefore, this approach is also not considered further.
Based on these considerations, the power set method was chosen as the transfor-

mation technique for further evaluation. In addition to that, some experiments on
the basis of the one-against-all method have been performed, with one expected
result: The training and classi�cation times were unacceptably slow. Therefore,
these experiments have been abolished again and the focus was fully put on the
power set method.
As classi�ers, kNN, Naive Bayes and SVM have been chosen. Details on these

and on experiment setups, as well as further evaluation of classi�cation perfor-

32

3.2. Multi Label Transformation

mance can be found in Section 4.1. Information on the data set used for experi-
ments can be found in Appendix A.
An initial experiment revealed that the number of labels generated by the power

set method is indeed large: On average, 219.2±216.991 labels where generated. As
the standard deviation indicates, the number of labels varies widely, depending on
the tagging behavior of the user. Two tested users tagged actively, which resulted
in the expected large number of up to 537 labels. Another two users did not
participate much in tagging: These data sets only generated 65 power set labels.
A single user tagged very little, which results in only 4 new labels.
In general, all classi�ers produced a poor accuracy. Only for one user sample, an

accuracy above 0.5 was reached by the Bayes classi�er. As expected, the number
of labels produced by the power set transformation seems to in�uence the classi-
�cation quality. Both data sets with a large number of labels yield accuracies of
maximum 0.25 and lower, while the Naive Bayes classi�er produces an accuracy
of more than 0.5 on a data set with few labels. This classi�er yields the overall
best results. While the number of labels appears not to be the only factor with
in�uence on the classi�cation performance, it still seems to be vital force here.
The common impression that more examples generally yield better classi�cation

results is not con�rmed by experiments here. Even though the example set User 1
provides mid�eld numbers of labeled examples and generated labels, classi�cation
accuracy is not adequate for kNN and SVM. Figure 3.1 visualizes the classi�cation
quality.
The absolute number of power set labels per user are given as pale blue bars

in the background (related to the right value axis). The absolute number of la-
beled examples per example set is presented in the green background bars. To
detect classi�cation quality, the accuracy measure (see Section 4.3.1) has been
used, protracted on the left value axis. The visualized values are also shown in
Table 3.5. Here, the row # labels denotes the number power set labels and # ex-
amples presents the number of labeles examples. The remaining three rows present
the classi�cation accuracy of the selected classi�ers.

labels

examples

Naive Bayes

kNN

SVM

Reference User 1 User 2 User 3 User 4

Accuracy

0

0.25

0.5

0.75

1

0

250

500

750

1000

1250

Figure 3.1.: Classi�cation on basis of the power set transformation.

33

Chapter 3. Data Preparation

Furthermore, it can be noted, that each classi�er reacts di�erently on the varying
number of labels and labeled examples. While the Naive Bayes classi�er produced
overall the best results, all classi�ers vary heavily in their quality.

Reference User 1 User 2 User 3 User 4 Avg.

labels 423 74 55 537 4 218.60± 217.66

examples 805 466 258 1236 20 557.00± 426.29

Naive Bayes 0.35 0.75 0.66 0.36 0.50 0.52± 0.16

kNN 0.19 0.56 0.36 0.23 0.50 0.37± 0.14

SVM 0.17 0.31 0.42 0.19 0.50 0.32± 0.13

Table 3.5.: Classi�cation accuracy on power set labels.

3.3. Label Reduction with FTC

In the previous Section 3.2, di�erent transformation approaches for tackling the
multi-label-problem have been discussed and evaluated. This evaluation resulted in
the power set method (Section 3.2.1) being chosen as the most promising approach.
However, classi�cation performance in combination with this approach is still poor.
It has been suspected, that this is a result of the large number of labels generated by
the power set transformation. In order to reduce this number, this section discusses
an approach for label-reduction on basis of frequent term-based clustering.
The developed approach will replace miltiple distinct label set in the multi-

label example set with a single label set. For example, the approach could replace
the label sets {a, b}, {a, b, c} and {a, b, d} by {a, b}. While this results in some
information loss, it still preserves the multi-label nature and reduces the number
of power set labels.
The label-reduction approach developed relies on Frequent term-based text clus-

tering (FTC) by Beil et al. This is a clustering technique specialized on text
documents and based on the concept of frequent item set mining. The algorithm,
proposed in [BEX02], yields a set of clusters and per cluster so called cluster de-
scription. This cluster description consists of a frequent term set, which is common
to the documents in the cluster.
In order to perform label-reduction, the FTC algorithm is applied to the label

sets of a multi-label example set. After that, the label sets in cluster are replaced by
the clusters description. It is expected that applying the power set transformation
hereafter will produce signi�cantly less labels. Furthermore, it is assumed that
classi�cation methods will cope better with the resulting example set.

34

3.3. Label Reduction with FTC

3.3.1. Frequent Item Set Mining

The �nding of frequent item sets in transactional databases, so called frequent item
set mining (FIMI), is a pattern recognition task, which often occurs in the area of
data mining. The goal is to �nd sets of items, which frequently occur together. A
typical scenario for FIMI is the detection of interesting associations in the market
basket analysis. Using the technique, one can detect which articles were commonly
bought in combination.
The basis for frequent item set mining is a �nite set of items I := {i0, . . . , in}.

This basic set facilitates the creation of 2|I| distinct item sets.
A transactional data base stores the relation

D : T → P(I)

which assigns an item set I ⊆ I to each transaction ID t ∈ T . A tuple (t, I) is
called a transaction. An example for a transactional database with 4 transactions
is shown in Table 3.6. The leftmost column determines the transaction ID, i.e.
T = {1, . . . , 4}, while the columns a to e refer to the items, i.e. I = {a, . . . , e}.
The value 1 in any of the data cells indicates that the speci�c item occurs in the
item set of the speci�c transaction.

T a b c d e

1 1 0 1 0 0

2 0 1 1 1 0

3 1 0 1 1 1

4 1 1 1 0 0

Table 3.6.: Example of a transactional database.

In the discipline of FIMI, the goal is to detect a set of item sets I(D, f) :=
{I1, . . . , Im} which occur more often in D than a given minimum frequency f , i.e.

∀I ∈ I(D, f) : I ⊆ I ∧ |{d ∈ D|I ⊆ d}| > f

In case D and f are clear from the context or negligible, the set of frequent item
sets is simply denoted as I. An item set I with |I| = k is denoted as a k-item set.
It is common to refer to all k-item sets Ik := {I|I ∈ I ∧ |I| = k.
Given a transaction (tx, Ix) ∈ D. If for an item set Iy ⊆ Ix holds, purportedly

Iy is contained in the transaction or Iy covers the transaction. Sequentially, all
transactions covered by a speci�c item set are expressed by the cover() function
[BEX02].

35

Chapter 3. Data Preparation

De�nition 11 (Item set cover):
The cover of an item set I on a transactional database D is de�ned as

cover(I,D) := {(tx, Ix)|I ⊆ Ix}

The relative frequency of an item set I in a transactional database D is referred
to as the support of the item set.

De�nition 12 (Item set support):
The support of an item set I over a transactional database D is de�ned as its
relative frequency.

support(I,D) :=
|cover(I,D)|
|D|

The support is a rudimentary measure for the interestingness of an item set. It
re�ects the empirial probability for a transaction to contain a speci�c item set.
It is common use in the �eld of frequent item set mining to de�ne a minimum
support threshold supmin ∈ [0, 1] instead of the minimum absolute frequency. If
support(I) > supmin holds, I is said to be frequent.

The most well-known algorithms for mining of frequent item sets are the Apri-
ori algorithm [AS94] and FTGrowth [HPYM04]. Apriori is based on a candidate
generation approach, starting from 1 item sets, and utilizes the fundamental mono-
tonicity property of frequent item sets: If an item set is frequent, all its subsets
are frequent too. The other way around, if an item set is not frequent, none of its
supersets can be frequent. This property creates a lattice on the search space of
item sets, which is visualized in Figure 3.2.

Although Apriori and FPGrowth both have a worst case runtime of O(2|D|),
empirical analysis has shown, that FPGrowth is about one magnitude faster than
Apriori [HPYM04]. This is mainly the result of saving database scans by drop-
ping candidate generation: The algorithm uses one database scan to determine all
frequent 1-item sets and a second run to create the so-called FPTree data struc-
ture, compressed representation of the database, which allows e�cient generation
of frequent item sets in a divide and conquer manner, again utilizing the frequency
monotonicity.

These fundamentals on the topic of frequent item set mining are just the prereq-
uisites for the technique of frequent term-based clustering, which is presented in
the next Section 3.3.2. A good resource for extensive information on the frequent
item set topic are the FIMI workshops: [GZ03], [JGZ04].

36

3.3. Label Reduction with FTC

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

fr
eq
ue
nc
y
in
cr
ea
si
ng

frequency
decreasing

Figure 3.2.: The lattice of frequent item sets.

3.3.2. Clustering with Frequent Term Sets

Frequent term-based clustering is a clustering approach, which works on frequent
item sets over a document corpus. The terms of this corpus correspond to the
items and the transactional database is built from binary occurrence term vectors
of the documents in the corpus (see Section 3.1).
A clustering algorithm attempts to partition a set of examples, such that exam-

ples in the same group are similar, or close to each other, in terms of a distance
measure. A so-called cluster analysis is typically applied, when there is not a priori
label assignment given for an example set, in order to detect groups of items which
belong together. Where the task of training a classi�cation model is referred to as
supervised learning, clustering denotes the counterpart, unsupervised learning. In
the scope of this thesis, a clustering is de�ned as:

De�nition 13 (Clustering):
A clustering C ⊆ P(E) for an example set E = {e1, . . . , en} is a set

C := {C1, . . . , Cm : Ci ⊆ E}

for which
⋃
C∈C C = E holds.

In the area of text mining, documents are typically clustered in order to group
them by topic area or other criteria, see for example [HMS02], [LA99] and [ST00].
With the technique of frequent term-based text clustering, Beil et al. tackle two
fundamental problems involved with clustering of text documents: Firstly, term

37

Chapter 3. Data Preparation

vectors typically inhere in very high dimensionality, but are sparsely populated.
This leads to long running clustering processes and possibly to poor clustering
quality. Secondly, while a clustering groups the documents, there is typically no
meaningful description for a cluster, e.g. a set of keywords.
The FTC technique is motivated by these problems: It avoids working directly

in the highly dimensional space of term vectors by clustering on frequent term
sets, and yields a description for each cluster in the form of a frequent term set.
The basis of the FTC technique is a frequent item set mining on text doc-

uments, i.e. the terms of a document corpus are the items. Through the cover
function (De�nition 11) each frequent term set is associated with the set of docu-
ments supporting it. This yields the de�nition of a frequent term-based clustering
description.

De�nition 14 (Frequent term based clustering description):
Let D be a document corpus (De�nition 7) and F = {F1, . . . , Fn} the set of frequent
term sets, i.e. frequent item sets, over a binary occurrence term vector encoding of
D. CD ⊆ F is a frequent term-based clustering description over D, if⋃

Fi∈CD
cover(Fi, D) = D

holds.

Note, that other common de�nitions of a clustering exclude overlapping clusters.
This is not the case for De�nition 13. Inferring a frequent term-based clustering
directly from its description has a high probability of containing such clusters.
However, the FTC algorithm itself returns a non-overlapping clustering.
Since overlapping clusters are not desirable, Beil et al. de�ne two measures

for the degree of cluster overlap: Standard overlap and entropy overlap. These
measures are used in the FTC algorithm to select cluster candidates with low
overlap potential. Let

f(R, Dj) := |{Fi ∈ R|Fi ⊆ Dj}|

denote the number of term sets Fi ∈ R, in some set R ⊆ F , which are supported
by a document Dj ∈ D, i.e. Dj ∈ cover(Fi, D).

De�nition 15 (Standard overlap):
The standard overlap (SO) measure of a cluster candidate Ci in respect to R ⊆ F
is de�ned as:

SO(Ci,R) :=

∑
Dj∈Ci

(f(R, Dj)− 1)

|Ci|

38

3.3. Label Reduction with FTC

The standard overlap calculates the average number of other term sets supported
by the documents in a cluster candidate, i.e. the potential of a cluster candidate
to overlap with other clusters. For an optimal cluster description, the standard
overlap of each cluster would be zero.
On basis of such an overlap measure, the FTC algorithm is in Algorithm 1. FTC

follows a greedy approach, selecting subsequent clusters on basis of the smallest
overlap with remaining cluster candidates. This is motivated by the large search
space of potential clusterings, which is O(2|F|) in size. Once selected as a cluster,
all documents covered by the term set are removed from the database and there-
fore from the cover of all remaining term sets. The overlap() function here is a
place holder for either the standard overlap or the entropy overlap measure. The
FrequentSets() function can be replaced by an arbitrary algorithm for frequent
item set mining, e.g. FPGrowth.

Algorithm 1 Flat frequent term-based clustering
function FTC(database D, �oat supmin)

selected := ∅
n := |D|
remaining := FrequentSets(D, supmin)
while |cover(selected)| 6= n do

bestCand := argminFi∈remaining overlap(Fi, remaining)
selected := selected ∪ {bestCand}
remaining := remaining \ {bestCand}
D := D \ cover(bestCand)
for Fi ∈ remaining do

cover(Fi) := cover(Fi) \ cov(bestCand)
end for

end while
return (selected, {cover(Fi)|Fi ∈ selected})

end function

Note, that the FTC algorithms returns a set of cluster descriptions in addition to
the clustering. The returned clustering is non-overlapping, since already covered
documents are explicitly removed from the database and from the cover of all
remaining term sets.
While the standard overlap measure is easy to calculate, it su�ers from a fun-

damental drawback ([BEX02]): Due to the monotonicity property (Section 3.3.1)
of frequent item sets, each document in the cover of a k term set supports at least
all of its subsets. An algorithm based on the standard overlap measure is therefore
expected to favor small item sets. To overcome this, Beil et al. also de�ne a second
overlap measure, the entropy overlap.

39

Chapter 3. Data Preparation

De�nition 16 (Entropy overlap):
Let Ci ∈ R be a cluster candidate, R ⊆ F . The entropy overlap (EO) measure is
de�ned as:

EO(Ci,R) :=
∑
Dj∈Ci

− 1

f(R, Dj)
· ln 1

f(R, Dj)

The entropy overlap of a cluster becomes zero if the contained documents do
not support any other remaining term set and it increases monotonically with the
number of term sets supported by the documents in a cluster candidate. Beil et
al. show empirically that the entropy overlap generally yields cluster descriptions
with more and larger term sets than the standard overlap does. However, a larger
number of term sets is not desired in the underlying case. Spot check experiments
with the entropy overlap con�rmed the assumption that the yielded label-reduction
results in worse classi�cation quality, compared to the standard overlap.
[BEX02] also describes a hierarchical �avor of FTC, which produces nested clus-

terings. The Hierarchical FTC (HFTC) discovers a tree structured clustering with
the empty term set as its root (this covers the full database). The hierarchy is then
created by applying the �at FTC recursively to the documents covered by a tree
node. In addition, on every level k of the tree, only the k-term sets are taken into
account. Furthermore, only such term sets need to be exploited, which are super
sets in the tree node. This way, HFTC explores the frequent term set search space
by seizing the monotonicity property.
The HFTC algorithm is not further concerned here, since it would require the

selection of feasible nodes from the tree for further proceeding. The label reduction
technique described in the following Section 3.3.3 uses only the �at FTC algorithm
together with the standard overlap measure. For the same reason, the consideration
of a similar approach by by Kaspari and Wurst ([KW07]) is omitted.

3.3.3. Label Reduction Technique

Section 3.2.2 showed that the power set transformation method is feasible for
creating a single-label classi�cation task from the problem of tag prediction in
micro-blogging systems. However the performance of the classi�ers evaluated on
basis of this transformation yielded only moderate performance. It is suspected,
that this is a result of the high number of labels generated by the power set
transformation.
In order to reduce the number of labels, a custom label reduction approach is

developed in this section. This approach is based on frequent term-based clustering
of the tag vectors of micro-blogging entries. The tag vectors are clustered using
the FTC algorithm. As described in Section 3.3.2, the algorithm does not only
return a clustering of the given vectors, but also a description for each cluster,

40

3.3. Label Reduction with FTC

consisting of a frequent term set. This frequent term set is used to replace all tag
sets contained in the corresponding cluster.
In this section, only the label reduction e�ect of this technique is shown by

experiments. An empirical evaluation of the e�ects to classi�cation quality can be
found in Section 4.3.3.
The task of the label reduction algorithm is to lower the number of labels gen-

erated by the power set transformation approach (see Section 3.2.1).
Formally, this transformation method is based on a classi�er

h’ : X → L′

h’(x) :=
∧
l∈h(x) l

In practice, this means a transformation of the multi-label example set, where a
set of labels M = {l1, . . . , lk} is replaced by a single new label M ′ =

∧
li∈M li. A

transformed example set was presented in Table 3.2.
In order to reduce the number of transformed labels, the number of unique label

sets must therefore be reduced. The idea behind the label reduction algorithm is
to replace a set of, maybe slightly di�erent, label sets with a frequent term set
they have in common. An important requirement here is, that all tag sets must
be covered by the label reduction mechanism. In order to assure this, all item
sets, instead of just the frequent ones, are mined from the tag sets. Experiments
presented in Section 3.3.4 have shown, that the set of all item sets over tag sets
does not grow too large to be e�ciently handled.
In order to identify tag sets, which are reasonably replaced by a common label

set, and to gain the corresponding new label, the FTC algorithm is used. The algo-
rithm clusters the given label sets based on frequent term sets mined from them. A
cluster contains only tag sets, which have a speci�c item set in common. Further-
more, the algorithm delivers the common term set of a cluster as its description.
This descriptive frequent term set is chosen to replace the label sets contained in
the cluster.
The algorithm developed for label-reduction is presented in Algorithm 2. It

receives the transactional database created from the label sets of a the multi-
label example set. As the transaction ID, the example ID is used. Furthermore, it
receives the example set itself, in order to replace the label sets. The transformed
example set is returned.
On the label database, a FTC clustering is generated, using a support threshold

which ensures that all item sets are mined instead of just the frequent ones. This
has been chosen in order to guarantee that all original label sets are covered in
the end. After that, the algorithm iterates over all frequent term clusters and all
example IDs contained in them. It retrieves the corresponding multi-label example
and adds it to the transformed example set, with the cluster description as its new
label set.

41

Chapter 3. Data Preparation

Algorithm 2 Label reduction algorithm.
function FTCLabelReduction(label database lD, example set E)

E ′ := ∅
(clusterDescs, clusters) := FTC(lD, 1

|E|)
for c ∈ clusters do

M ′ := clusterDescs(c)
for id ∈ c do

(xi,Mi) := E(id)
E ′ := E ′ ∪ {(xi,M ′)}

end for
end for
return E ′

end function

It is expected, that the example set returned by the algorithm contains far less
distinct multi-label sets, compared to the original one. If this is the case, the power
set transformation method will also yield less distinct labels and it is expected that
classi�cation on this basis yields better results.

3.3.4. Evaluation

In following, the developed label-reduction technique (Algorithm 2) is evaluated
on basis of two leading questions:

1. Does the algorithm yield the expected label-reduction e�ect?

2. Does the FTC algorithm produce sensible clusterings?

Label Reduction E�ect

It is expected that the number of labels can be reduced signi�cantly using the de-
veloped label reduction algorithm. Experiments con�rmed this expectation: While
on average a reduction rate of just 0.264± 0.199 could be achieved, an analysis of
individual user data sets showed that, for data sets with a large amount of tags,
the reduction rate is signi�cantly better. Figure 3.3 visualizes the absolute reduc-
tion per user and reveals that a reduction by up to 0.57 is possible for users with
many tags. In absolute numbers, this is in the best case a reduction to 182 power
set labels, while it was 423 before.

42

3.3. Label Reduction with FTC

Figure 3.3.: Reduction of labels e�ect

Cluster Quality

To measure the quality of the FTC clustering, two criteria have been de�ned:
Firstly, the intra and inter cluster distances has been computed, which is a common
technique to judge the quality of a clustering. Secondly, clustering generated by
the FTC technique haven been compared to clusterings generated my kMedoids,
a clustering technique with well-known quality.
The general goal in clustering is to have compact clusters, i.e. the average intra

cluster distance is low, while the distance between the clusters, i.e. average inter
cluster distance, is higher by at least one magnitude. The intra and inter cluster
distance measures, sometimes also computed as similarity measures, are commonly
used to evaluate clusterings, e.g. [Azu02] and [KW98].
Di�erent de�nitions of the two measures exist. The de�nitions used in this thesis

are given in De�nition 17 and De�nition 19. For the intra cluster distance, the
average distance between all contained examples is used. The inter cluster distance
is calculated as the average distance between all examples from each cluster.

De�nition 17 (Intra cluster distance):
Given a cluster Ci = {e1, . . . , en}, the intra cluster distance is de�ned as

Dintra(Ci) :=
1

|Cx|2
∑
ex∈Ci

∑
ey∈Ci

d(ex, ey)

d(ex, ey) is an arbitrary distance measure on the feature space X . In case of this
thesis, the Euclidean distance is used as the general distance measured, as speci�ed
in De�nition 18.

De�nition 18 (Euclidean distance):
The Euclidean distance of two vectors ~x = (x1, . . . , xd), ~y = (y1, . . . , yd) is de�ned

43

Chapter 3. Data Preparation

as

d(~x, ~y) :=

√√√√ d∑
i=1

(xi − yi)2

The inter cluster distance is de�ned in correspondence to the intra cluster dis-
tance:

De�nition 19 (Inter cluster distance):
Given a clustering C = {C1, . . . , Ck} and let C\i = C \ Ci be the set of cluster
without a speci�c cluster Ci. The inter cluster distance for a cluster Ci is de�ned
as

Dinter(Ci) :=
1

|Ci| ·
∑

Cj∈C\i |Cj|
∑
ex∈Ci

∑
ey∈

⋃
C\i

d(ex, ey)

In order to measure the quality of a complete clustering, both de�ned mea-
sures are averaged over all contained clusters, while average values have not been
weighted in any way.

De�nition 20 (Average x cluster distance):
Given a clustering C = {C1, . . . , Ck}

Dx(C) :=

∑
Ci∈C Dx(Ci)

|C|

denotes the average cluster distance, where x is either intra or inter.

As an additional quality assessment, the given data sets have been clustered
with a second clustering algorithm with well-known clustering quality: The kMe-
doids algorithm. In order to assess the clustering quality of FTC, the clusterings
have been compared using the Rand index ([Ran71]). This measure assesses the
similarity of two clusterings, as speci�ed in De�nition 21.

De�nition 21 (Rand index):
Given an example set E = {e1, . . . , en} and two clusterings on E: C1 =
{C1,1, . . . , C1,k} and C2 = {C2,1, . . . , C2,l}. Let Ci(ej) denote the cluster from Ci
in which ej resides.

The Rand index of C1 and C2 is de�ned as

rand(C1, C2) :=

∑n
i=1

∑i
j=1 γ(ei, ej)(
n
2

)

44

3.3. Label Reduction with FTC

where

γ(ei, ej) :=

{
1, if C1(ei) = C1(ej)⇔ C2(ei) = C2(ej)
0, otherwise

In other words: The Rand index scores 1 for each two examples, if they reside in
the same clusters in both clusterings or if they reside in di�erent clusters in both
clusterings. The Rand index is therefore even capable of comparing clusterings with
a di�erent number of clusters. The Rand index returns a value rand(C1, C2) ∈ [0, 1],
while a value near 1 denotes a high similarity between the clusterings and lower
values indicate more di�erence.
Two di�erent experiments have been performed in order to asses the clustering

quality of FTC in the underlying case: Firstly, FTC has been applied to the tag
sets, as it is done in the label reduction technique. The resulting clustering is
compared to a kMedoids clustering with k set to the number of clusters yielded
by FTC.
The second experiment attempts to asses the quality of the label reduction pro-

cess. As the basis, the label reducted example set is used, not only the clustered tag
vectors. The label assignement is here interpreted as a clustering. This clustering
is compared to a kMediods on the full example set.
It is expected, that FTC on the tag vectors returns a high-quality clustering,

since it is specialized on document clustering. For the second experiment, results
are not expected assess moderate to bad clustering quality, because the full example
set contains much more information, which is not available to FTC on the tag
vectors, but to the kMedoids algorithm.
The experiment results, presented in Table 3.7, underline these expectations.

The table presents the values of inter and intra cluster distance, as well as the
Rand index in comparison to a kMedoids clustering, for both described cases: The
upper half of Table 3.7 shows the values for FTC and kMedoids on the tag vectors.
The bottom half presents the intra and inter cluster distance for the example set
after label-reduction has been applied. Rand index compares the clustering induced
by reduced labels on the example set with the kMedoids clustering on it.
The frequent term-based clustering on the tag vectors turned out to be, as

expected, of good quality. The average intra cluster distance over all data sets
is 0.08 ± 0.08 while the inter cluster distance is, with 1.57 ± 0.12, more than a
magnitude higher. The Rand index based comparison with kMedoids on the tag
vectors also indicates a good clustering quality for FTC: The average Rand index
between both clusterings is 0.91± 0.06, which is pretty high, indicating that both
clusterings are almost equal.
The di�erence between average intra and inter cluster distance of the mapped

FTC clustering is, as expected, lower. The inter cluster distance is not even half a
magnitude larger than the intra cluster distance. Interestingly, the Rand index be-
tween this mapped FTC and kMedoids without mapping is higher than expected.

45

Chapter 3. Data Preparation

Reference User 1 User 2 User 3 User 4 Avg.

FTC (tags)
Intra 0.21 0.03 0.04 0.11 0 0.08± 0.08
Inter 1.77 1.61 1.48 1.56 1.41 1.57± 0.12
Rand 0.89 0.93 0.92 0.81 0.99 0.91± 0.06

FTC (mapped)
Intra 1.40 1.24 1.27 1.17 1.63 1.34± 0.16
Inter 5.08 4.27 3.94 4.67 4.66 4.52± 0.39
Rand 0.84 0.75 0.71 0.88 0.69 0.77± 0.07

Table 3.7.: FTC clustering evaluation.

With 0.77 ± 0.07 on average, the Rand index can still be considered quite high.
While the clusterings are not almost equal, they still seem to be pretty similar.

46

Chapter 4

Classi�cation

The task of tag prediction is a multi-label classi�cation problem. In the concrete
case of this thesis, this means: A micro-blogging entry can have an arbitrary num-
ber of tags assigned. Therefore, the targeted tag prediction technique should be
capable of classifying a new micro-blogging entry with a set of multiple labels, i.e.
tags.

In Section 3.2.1, di�erent methods for transforming the multi-label problem
into a single-label variant were presented and evaluated. The goal of these trans-
formation methods is to tackle the multi-label problem with standard, single-label
classi�cation techniques instead of developing new approaches dedicated to the
multi-label scenario.

As the result of this evaluation, the so-called power set method has been selected
for being used within this thesis. The power set transformation method creates a
new label for every distinct label set of the multi-label data set. This has been
formalized by a classi�er of the form

h’ : X → L′

h’(x) :=
∧
l∈h(x) l

Experiments presented in Section 3.2.2 proved the assumption that the power set
transformation yields a large number of labels. In order to diminish the e�ect
of this large number of labels to classi�cation quality, Section 3.3.3 presented a
label reduction technique, which has been developed in scope of this thesis. The
technique applies frequent term-based clustering to the label sets of the original
data set and replaces all label sets in a cluster with a new one. It has been shown
in Section 3.3.4, that this approach is capable of signi�cantly reducing the number
of labels generated by the power set transformation method.

The subsequent sections in this chapter are dedicated to evaluating four di�erent
classi�ers on this basis: Three standard classi�ers are selected for the evaluation
in Section 4.1 � kNN, Naive Bayes and SVM. In addition to these, a custom
classi�cation technique is developed in Section 4.2. This approach works similarly
to kNN, but generates a condensed representation of the training set. All four
classi�ers are evaluated in terms of their classi�cation quality in Section 4.3.

47

Chapter 4. Classi�cation

4.1. Standard Classi�ers

Three classi�ers from the standard repertoire of machine learning have been se-
lected to evaluate the multi-label transformation methods described in Chapter 3.
These are:

1. The k-nearest-neighbor (kNN) algorithm was selected due to its simplicity,
low training and moderate classi�cation time. Furthermore, [Yan99] showed
a general suitability of kNN for text classi�cation purposes.

2. The support-vector machine (SVM) approach was chosen, because it is still
an active topic of research (e.g. [JFY09], [TCCL07] and [MM05]) and well-
known for its good generalization capabilities.

3. Finally, Naive Bayes is considered, since it is most commonly used in industry
applications1,2, due to its high classi�cation quality with low computational
e�ort. Its most familiar application is detection of unsolicited email, which
is also a text classi�cation task.

In following, these three algorithms are explained in further detail.

4.1.1. kNN

The kNN algorithm is a so-called lazy learner, which performs all necessary com-
putation at classi�cation time. It simply stores all training examples in its model.
For classi�cation of a new example e = (x, l), the algorithm searches for the k
nearest neighbor examples in the training set E. The most common label among
the neighbors is then predicted for the new example.
Formally, the classi�cation function is de�ned as follows in this thesis

h(~x) := argmax
l∈L

|{(~xi, l) ∈ Nk(~x,E)}|

Nk(~x,E) denotes the k-neighborhood of ~x in the training set E, i.e. the set of k
nearest training examples to ~x, which is formalized in De�nition 22, as used in this
thesis.

De�nition 22 (k-neighborhood):
Let X := {~x1, . . . , ~xn} be a set of vectors ~xi ∈ X and let ~x ∈ X be a vector in the
same space. The k-neighborhood of ~x in E is de�ned as

Nk(~x,E) ⊆ E

subject to

1http://getpopfile.org/ (2010-06-22)
2http://www.sux0r.org/ (2010-06-22)

48

4.1. Standard Classi�ers

1. |Nk(~x,E)| = k

2. ∀~u ∈ Nk(~x,E), ~v ∈ E \ Nk(~x,E) : d(~x, ~u) ≤ d(~x,~v)

where d(~x, ~y) is a distance measure on X .

As the distance measure, the Euclidean distance is used in this thesis, which has
already been speci�ed in De�nition 18 as follows:

d(~x, ~y) :=

√√√√ d∑
i=1

(xi − yi)2

A common variation of the kNN approach weights the nearest neighbors and
casts a weighted vote among them, in order to classify the new example. The
classi�cation function can then be de�ned as follows:

hw(~x) := argmax
l∈L

∑
(~xi,l)∈Nk(~x,E)

w(~x, ~xi)

where w is an arbitrary weighting function, typically based on the distance between
the given vectors, i.e. more distant examples are weighted lower. Choosing a weight
function, which always returns a constant value, e.g. 1, the weighted classi�cation
function is equivalent to the unweighted case.
A naive implementation of the kNN algorithm consumes O(|E|) memory for

storing all training examples. Furthermore it has a worst case classi�cation run-
time of O(|E|), for comparing all training examples with the example to classify.
Using an optimized data structure such as kd-tree [FBF77], the search of nearest
neighbors can be reduced to an average O(log |E|) runtime with the drawback of
additional computation time during the training phase, in order to prepare the
data structure.

4.1.2. Naive Bayes

The Naive Bayes classi�er produces a probabilistic classi�cation model, that relies
on a strong independence assumption regarding the features of an example. Despite
this highly over-simpli�ed assumption, the approach has practically proven its high
classi�cation quality, e.g. shown in [Ris] and [ELM03].
A Naive Bayes classi�er relies on a conditional probability model. Its classi�ca-

tion function can be described as

h(~x) := argmax
l

P(l|x1, . . . , xd) (4.1)

So the Naive Bayes classi�er assigns the label with the highest probability, give
the observed feature values.

49

Chapter 4. Classi�cation

The basis of this classi�cation method is the probability

P(L|X1, . . . , Xd) (4.2)

where X1, . . . , Xd are stochastic variables for the features and L is a stochastic
variable for the label. The given probability is not easy to calculate itself, it is
therefore transformed as follows:

P(L|X1, . . . , Xd) =
P(L) P(X1, . . . , Xd|L)

P(X1, . . . , Xd)

Further transformation using the rules for conditional probabilities yields

P(L) P(X1|L) P(X2|L,X1) . . .P(Xn|L,X1, . . . , Xd−1)

P(X1, . . . , Xd)

The speciality of Naive Bayes classi�ers is now the naive assumption, that every
feature is conditionally independent of the others, given the label. Under this
assumption, the term can be rewritten as

P (L)P (X1|L) . . . P (Xd|L)

P (X1, . . . , Xd)
=
P (L)

∏d
i=1 P (Xi|L)

P (X1, . . . , Xd)

which results in a reformulation of the initial probability model from Equation 4.2:

P (L|X1, . . . , Xn) =
P (L)

∏d
i=1 P (Xi|L)

P (X1, . . . , Xd)
(4.3)

In order to classify a new example, a Naive Bayes classi�er calculates the con-
ditional probability for every label, given the observed example features. It then
assigns the label with the highest probability. The initial classi�cation function
(Equation 4.1) is the reformulated as

h(~x) := argmax
l

P (L = l)
∏d

i=1 P (Xi = xi|L = l)

P (x1, . . . , xd)

Storage and computation time consumption of a Naive Bayes model during
classi�cation are independent of the number of training examples: Examining the
prediction probability term in Equation 4.3 yields, that the denominator is con-
stant for a given example. The calculation of this part can therefore be safely left
out in practice, with the result that no storage is consumed for a priori probabil-
ities of feature values. The other probabilities can be estimated through relative
occurrence frequencies in the training set.
It can therefore be deduced, that the storage consumption of a Naive Bayes

model only depends on the number of features, their possible values, and the
number of classes. Training of a Naive Bayes classi�er works in linear time, based
on the number of examples and features, while classi�cation consumes linear time
in the number of features and classes.

50

4.1. Standard Classi�ers

4.1.3. SVM

Support vector machines descend from the area of large margin classi�ers, i.e. they
determine a set of hyperplanes, which best divide data points belonging to di�erent
classes. While this works by default only with linearly separable data sets, SVMs
can even be used with non-linearly separable data by using the so-called kernel
trick. Figure 4.1 visualizes the idea of SVM with linearly separable data and two
labels.

Figure 4.1.: Hyperplane in R2 with linearly separable data. The maximum
margin hyperplane is shown, including margin (grey) and support vectors
(strong color).

In the following, the SVM technique is described for the case of two labels and
linearly separable data. The adjustment for data which is not linearly separable
follows after that. In case there are more than two classes, one typically chooses a
one-against-all approach or the multi-class SVM [FH02]. Without loss of generality,
possible label values are in the following assumed to be {−1, 1}. In practice, label
values can either be mapped to these or can be scaled. The presented description
is inspired by the SVM de�nitions given by Mierswa in [Mie06] and Hastie et al.
in [HTF01].

51

Chapter 4. Classi�cation

Linearly Separable Data

The goal of SVM is to �nd a hyperplane that separates a given set of data points
in X by their class. This desired hyperplane can be de�ned as

H := {~x|〈~w, ~x〉+ b = 0} (4.4)

where ~w is the normal vector of the hyperplane and |b|
‖~w‖ determines its perpendicu-

lar distance to the origin. ‖~w‖ denotes the Euclidean length of the vector ~w. Once
the parameters ~w and b have been determined, classi�cation of a new example can
be performed through

h~w,b(~x) := sgn(〈~w, ~x〉+ b) (4.5)

The classi�cation function of SVM returns either −1 or 1. Assuming that a sepa-
rating hyperplane is found, the following constraint must hold for all n examples
in the training set E:

∀(~xi, li) ∈ E : li(〈~w, ~xi〉+ b) ≥ 0 (4.6)

Since there exist an in�nite number of hyperplanes that separate the given data,
the target is an optimally separating hyperplane. Optimality in this case is de�ned
as the hyperplane with maximum margin to the data points of both classes, for-
malizing the concept of structural risk minimization (SRM) [Mie06]. In fact, not
all examples, but only the closest ones to the hyperplane must be considered in
order to achieve this goal.
By normalizing b and i~w the way that |〈~w, ~xi〉+ b| = 1 holds, Equation 4.6 can

be transformed to
∀(~xi, li) ∈ E : li(〈~w, ~xi〉+ b) ≥ 1

so that the margin of the desired hyperplane is given by 1
‖~w‖ . The goal is to maxi-

mize this margin, in order to �nd the optimal hyperplane. To ease later equations,
this problem is commonly rewritten to the minimization of 1

2
‖~w‖, yielding the

optimization problem

minimize 1
2
‖~w‖2 (4.7)

s.t. ∀(~xi, li) ∈ E : li(〈~w, ~xi〉+ b) ≥ 1 (4.8)

For easier handling of the inequality constraint, this problem is brought into La-
grangian form, yielding a Lagrangian multiplier αi for every training example:

LP(~w, b, ~α) =
1

2
‖~w‖2 −

n∑
i=1

αili(〈~w, ~xi〉+ b) (4.9)

In order to �nd the minimum, the derivatives in direction of w and b need to
become zero, i.e.

~w =
∑n

i=1 αili~xi (4.10)

0 =
∑n

i=1 αili (4.11)

52

4.1. Standard Classi�ers

Transforming the minimization problem to a maximization (Wolfe dual) version
is achieved by substituting Equation 4.10 and Equation 4.11 into the Lagrangian
(Equation 4.9):

LD(~w, b, ~α) :=
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

liljαiαj〈~xi, ~xj〉

This �nally yields the dual optimization problem to be solved in order to �nd the
parameters for an optimally separating hyperplane:

maximize
∑n

i=1 αi −
1
2

∑n
i=1

∑n
j=1 liljαiαj〈~xi, ~xj〉 (4.12)

s.t. αi ≥ 0,∀i = 1, . . . , n (4.13)

and
∑n

i=1 αili = 0 (4.14)

The optimal normal vector ~w∗ can now be calculated by substituting the optimal
vector ~α∗ into Equation 4.10, while the optimal o�set b∗ can be received using the
initial constraint from Equation 4.8. ~w∗ is actually a linear combination of example
vectors ~xi ∈ E for which αi is non-zero. These examples, called the support vectors,
are nearest to the hyperplane and therefore de�ne the margin. The support vectors
are highlighted through strong color and additional circles in Figure 4.1.
On this basis, an optimal separating hyperplane for linearly separable data can

be found.

Non-Linearly Separable Data

In a scenario where data is not linearly separable, the described optimization
does not yield a result, since Equation 4.8 cannot be ful�lled for all examples
(~xi, li) ∈ E. A simple solution to this issue is relaxing the constraint using slack
variables ξi, i = 1, . . . , n, as well as a corresponding correction term. This yields to
an adjusted initial optimization problem of the form

minimize 1
2
‖~w‖2 + C

∑n
i=1 ξi

s.t. ∀i : li(〈~w, ~xi〉+ b) ≥ 1− ξi

Solving this problem already helps with classifying data sets which are not fully
linearly separable, for example due to outliers or noise. However, many cases exist,
where a data set is not linearly separable at all, so this adjustment fails. The
introduction of a kernel function allows the SVM to cope with such non-linearly
separable data sets as well.
Examining Equation 4.12, it can be noted that the training feature vectors only

occur within the dot product 〈~xi, ~xj〉, which can be interpreted as the similarity of
two data points in X . Mapping data points into a di�erent features space K before
the dot product is calculated, makes the optimization problem depend on the dot
product in this target space. Such an e�ect is achieved by a kernel function.

53

Chapter 4. Classi�cation

Figure 4.2.: Transformation of data which is not linearly separable to a di�erent
feature space where it becomes linearly separable.

De�nition 23 (Kernel function):
Given vectors ~x1, ~x2 ∈ X and a mapping Φ : X → K into another space K with a
dot product de�ned. A function k : X × X → R for which

k(~x1, ~x2) = 〈Φ(~x1),Φ(~x2)〉

holds is called a kernel function or simply kernel.

Figure 4.2 visualizes the idea behind transformation into a di�erent feature
space so as to making data linearly separable. The fundamental advantage of such
transformations is, that for some mappings Φ a kernel function k exists, which can
be calculated without performing the actual feature space transformation. This can
reduce computation time signi�cantly and allows the usage of in�nite dimensional
spaces. A prominent example for kernel functions are radial basis function (RBF)
kernels:

kRBF(~x1, ~x2) := exp(−‖~x1 − ~x2‖
2

2σ2
), σ > 0

Replacing the dot product in the linear optimization problem with a kernel function
yields the general optimization problem

maximize
∑n

i=1 αi −
1
2

∑n
i=1

∑n
j=1 liljαiαj k(~xi, ~xj)

s.t. 0 ≤ αi ≤ C, ∀i = 1, . . . , n

and
∑n

i=1 αili = 0

Solving this problem with a �tting kernel function allows to use SVMs with
non-linearly separable data.

Computation Time

SVM has faced versatile attention in research for a long time now, starting with
a paper by Vapnik [VC74] in 1974. Fields of application include face detection

54

4.2. Custom Classi�cation Approach

[OFG97], text categorization [Joa97b] and many others. Training a SVM is a
quadratic programming (QP) problem, which can in general be solved in O(|E|3).
Di�erent approaches exist for solving the optimization problem somehow more e�-
ciently, such as Sequential Minimal Optimization (SMO) [Pla98], EvoSVM [Mie06],
SVMlight [Joa99] and the Cutting-Plane Algorithm by Joachims, which trains linear
SVMs in linear time.
Despite its high requirements in terms of computation time and memory during

training phase, SVM has been chosen to be evaluated in the scope of this thesis
for its empirically well-known classi�cation quality.

4.2. Custom Classi�cation Approach

In the following, a custom classi�er is developed, inspired by the kNN approach
which has been explained in detail in Section 4.1.1. A fundamental issue of kNN
is, that the algorithm stores the full set of training examples as its model and, in
worst case, needs to compare a new example with all of these training examples,
in order to classify. The in following presented approach attempts to mitigate this
issue. Instead of storing the full training set, a condensed representation is stored.
This representation consists of a set of representative vectors per class. An example
for such a representative is the average vector of the class.
A similar approach is considered in [HK00]. However, [HK00] uses the cosine

similarity measure instead of the Euclidean distance for vector comparison and
only concentrates on the average vector as the representative. In contrast to that,
the underlying thesis considers di�erent representative generation techniques.
The following Section 4.2.1 motivates the developed approach further on basis of

empirical results presented in Section 3.3.4. After that, the algorithm to transform
an example set into its condensed representation is developed in Section 4.2.2.
Finally, Section 4.2.3 presents three di�erent approaches for generating a class
representatives: The average and median vector are considered, as well as the
technique of selecting well scattered points from the examples of a class. The
latter approach is proposed in [GRS98] for cluster representation.
An empirical evaluation of the approach on basis of the described representative

generation techniques can be found in Section 4.3.

4.2.1. Motivation

kNN is an appealing approach due to its simplicity and clarity. However, exper-
iments � presented in Section 4.3 � turned out that it performs only moderately
well in the scenario of tag prediction in micro-blogging systems. Furthermore, the
technique developed to reduce the number of unique labels (Section 3.3.3) did not
yield signi�cant enhancements on kNN classi�cation quality.

55

Chapter 4. Classi�cation

It is expected, that the observed de�ciency is a result of the curse of high di-
mensionality, i.e. the sparseness of high-dimensional term vectors and the resulting
short distance between examples of di�erent classes:
The content of a micro-blogging entry is limited to 140 characters, which induces

a maximum number of 70 terms, i.e. 70 term vector dimensions are non-zero. Com-
pared to the number of distinct terms in the vocabulary of a user sample, which is
in average 4415.60 (Appendix A), this can be considered a sparse vector popula-
tion. Given two term vectors with no weights in common, a maximum Euclidean
distance of 11.83 can be reached, which is considered low. This assumption of low
distance between examples is also underlined by the evaluation of frequent term-
based clustering in Section 3.3.3, where the average inter cluster distance turned
out to be also low (about 5).
Motivated by these observations, a classi�cation approach similar to kNN has

been developed in the scope of this thesis: The approach relies on transforming a
given training set into a condensed representation: For each class, a set of repre-
sentative vectors are stored instead of storing the full training set. On the basis of
these representatives, kNN classi�cation is performed with n = 1. This strategy is
expected to yield two enhancements in respect to classical kNN classi�cation:

1. The worst case computation time during classi�cation is independent from
the number of seen training examples, similar to the Naive Bayes classi�er
(see Section 4.1.2).

2. The classi�cation quality is expected to be better than for kNN, since rep-
resentatives are expected to be more distant than examples in the training
set.

Figure 4.3 visualizes the di�erent approaches of kNN classi�cation and proposed
classi�er. A setup with three di�erent classes is shown (green, red and blue). The
example to classify is shown in strong color of its ground truth label. The grey
circle is only a guide. While kNN considers all training examples for classi�cation,
the developed classi�cation approach takes only a representative per class into
account. For k ∈ {1, 3}, kNN would classify the new example incorrectly as red.
In contrast to that, 1NN on the class representatives (Figure 4.3b) would classify
the new example correctly as green.

4.2.2. Algorithm

The classi�cation approach proposed in this thesis works on basis of the kNN
algorithm. Instead of searching for nearest neighbors in the full training set, only a
smaller set of representative vectors per class are taken into account. This approach
is formalized in following on basis of an example set transformation. First, the
generation of a representative vector set from the examples of a class is de�ned.

56

4.2. Custom Classi�cation Approach

(a) kNN (b) Representatives

Figure 4.3.: kNN vs. representative based classi�cation.

After that, this transformation is applied to all classes that occur in the training
set, in order to transform it into a new example set. On this transformed example
set, kNN is applied.
To ease equations F := X × L denotes the space of all possible examples.

De�nition 24 (Representative function):
Let E ⊂ F be an example set. El denotes all examples from E with label l, i.e.
∀(~xi, li) ∈ E : li = l⇒ (~xi, li) ∈ El. A representative function in E is de�ned as

r : P(El)→ P(F)

such that

r(El) := {(~xs, l), . . . , (~xt, l)}

subject to

1. |r(El)| ≤ |El|

2. ∀li ∈ L : |r(El)| ≤ µ

for a �xed value µ.

De�nition 25 speci�es a general scheme for a function that generates a repre-
sentative for a class. The representative is de�ned as a set of, potentially new,

57

Chapter 4. Classi�cation

examples, calculated on basis of the original examples in the class. A class repre-
sentative is intentionally not de�ned as a single vector, e.g. a centroid, but as a
set of vectors. However, this set is restricted to be no larger as the original set of
examples and to not exceed a de�ned size µ. The latter constraint ensures that the
worst case classi�cation time is independent of the number of training examples.
Section 4.2.3 presents di�erent approaches for generating representatives.
On this basis, an example set transformation is speci�ed in De�nition 25.

De�nition 25 (Representative example set transformation):
Given an example set E and its label set L. The transformation of E through a
representative function r is de�ned as:

tr : P(F)→ P(F)

given through

tr(E) :=
⋃
l∈L

r(El)

with El as speci�ed in De�nition 24.

The classi�cation function is then de�ned on basis of such a transformation as

h(x) := argmax
l∈L

|{(~xi, l) ∈ Nk(~x, tr(E))}|

following the kNN approach on the set of all representative vectors. In scope of this
thesis, only k = 1 is considered. Algorithm 3 presents a more practical description
the example set transformation.

Algorithm 3 Representative example set transformation.
function ReprTransformation(example set E, label set L)

transSet := ∅
for l ∈ L do

transSet := transSet ∪ r(El, l)
end for
return transSet

end function

On this basis, the algorithm can be adapted by using arbitrary representative
generation functions which conform to De�nition 24. Furthermore, no new algo-
rithm needs to be developed in order to perform the actual classi�cation, but the
kNN algorithm can be re-used.

58

4.2. Custom Classi�cation Approach

4.2.3. Representative Calculation

Three di�erent methods for calculating class representatives have been evaluated
within this thesis. These methods are used to perform the example set transfor-
mation as described in Section 4.2.2.
First, the centroid based approach from [HK00] is considered, where the average

vector of all the examples in a class is used a single representative vector. The
second approach in consideration, chooses the median example of a class as its
representative. Finally, the concept of well scattered points, as de�ned in [GRS98],
is considered. Here, a �xed number of examples is chosen to represent a class.
In the following, these approaches for generating a class representative are de-

scribed in further detail. The basis of each formalization is the representative
function, which has been speci�ed in De�nition 24 as

r : P(El)→ P(F)

with El ⊆ E being all examples from E ⊂ F with label l.
Section 4.3 evaluates the proposed classi�cation method together with the trans-

formation functions described in the following. Figure 4.4 visualizes a class with
three examples and each of the presented representative generation approaches.

Average and Median Representative

The average representative is calculated by the following function:

ravg(El) := {(avg(El), l)} (4.15)

while avg calculates the average vector of a given set of vectors F as

avg(F) :=
1

|F |
∑

(~x,l)∈F

~x

So, the representative set here consists only of a single new example, for which the
feature vector is calculated as the average of all feature vectors in the class. The
average representation is also used in [HK00].
The median representative function generates a set with only one example, too.

In contrast to the average representative, where a new example is generated, the
median representative function chooses one of the existing examples in the class:

rmedian(El) := {(median(El), l)} (4.16)

with
median(F) := argmin

~x

∑
(~y,l)∈F

d(~x, ~y)

The chosen example has the smallest distance to all examples in the class. d(~x, ~y)
could be any distance measure on X , but within this thesis, only the Euclidean
distance (De�nition 18) is considered.
Both presented representative functions obviously comply to De�nition 24.

59

Chapter 4. Classi�cation

(a) Average (b) Median (c) Well scattered
points

Figure 4.4.: Di�erent types of class representatives. One class with 3 examples,
chosen representatives in red.

Well Scattered Points

The technique of choosing well scattered points as a class representative origi-
nates from Guha et al. [GRS98]. There, the CURE clustering algorithm for large
databases is described. CURE represents a cluster through a small number of
points from it, in order to preserve the shape of the cluster to some degree. This
idea is adapted to a class representative, in scope of this thesis. The adaption is
obviously simple, since examples in a class can essentially be seen as a cluster.
Guha et al. observe that a single cluster representative, e.g. the average vector

centroid, can describe small clusters of spherical shape quite well. But such a
representative does not describe clusters of di�erent shape accurately. Similarly,
representing a cluster through all of its points is also not suitable: Both approaches
result in incorrectly merged clusters in the CURE system. To avoid this problem, a
cluster is represented by a set of points from it. These points are chosen to be well
scattered within the cluster: They have the maximal distance among each other,
i.e. lie on the cluster border, in order to conserve the cluster shape to some degree.
To mitigate the in�uence of outliers, the well scattered points are shrunk by a

certain amount in the direction of the cluster average vector. Algorithm 4 presents
the procedure of choosing well scattered points from a set of vectors. The algorithm
has been slightly adapted to work as a representative function in this thesis.
The shown algorithm receives a set of feature vectors, the number of points to

be generated and a shrinking factor α ∈ [0, 1]. It �rst calculates the average vector,
as de�ned in Equation 4.15. The average is then used to determine the �rst well
scattered point as farthest away from it. Subsequent points are selected as far as
possible away from all already selected ones. Finally, all selected points are shrunk
in direction of the average by the fraction α.
The shrinking of well scattered points in direction of the cluster average does not

60

4.2. Custom Classi�cation Approach

Algorithm 4 Algorithm to generate well scattered points
function WellScatteredPoints(vector set c, int pointCount, �oat α)

tmp := ∅
wsp := ∅
avg := ravg(c)
for i ∈ {1, . . . ,min{pointCount, |c|}} do

maxDist := 0
for p ∈ c \ tmp do

if i = 1 then
dist := d(p, avg)

else
dist := min{d(p, q)|q ∈ tmp}

end if
if dist ≥ maxDist then

maxDist := dist
maxPoint := p

end if
end for
tmp := tmp ∪ {maxPoint}

end for
for p ∈ tmp do

wsp := wsp ∪ {p+ α(avg − p)}
end for
return tmp

end function

only mitigate the e�ect of outliers, but also in�uences to which degree the shape
of the point set is conserved, together with the number of points to generate: By
choosing more well scattered points, the original shape is conserved in more detail.
A low α value leaves the selected points about at their original position. As a
result, surface abnormalities are recorded more strongly. A larger α value moves
the well scattered points more in direction of the average, mitigating the e�ect of
surface abnormalities.
Figure 4.5 visualizes the idea of well scattered points and Figure 4.4c shows the

technique in comparison to other presented representative generation techniques.
On basis of the algorithmic description of the well scattered points technique (Al-
gorithm 4), the representative function can be de�ned as

rWSP(El) := {(xi, l)|xi ∈WellScatteredPoints(El, c, α)}

while c, α are the parameters for the algorithm to be de�ned in advance. This
representative function conforms to De�nition 24: Although being manipulated,

61

Chapter 4. Classi�cation

Figure 4.5.: 3 well scattered points (strong color) selected from 15 examples
(pale). Examples with additional circles have been selected and have been
shrunk in direction of the average vector (light grey).

the well scattered points reside in the same feature space as the input examples.
The number of points is in maximum equal to the number of input examples.
Furthermore it is overall bound by the parameter c. Choosing µ = c makes the
maximum number of vectors condition hold.

4.3. Evaluation

Four classi�cation techniques have been presented throughout this chapter, which
are to be evaluated in following, regarding their feasibility for tag prediction in
micro-blogging systems. Three methods have been selected from the standard
repertoire of machine learning: kNN (Section 4.1.1), a simple lazy classi�er, Naive
Bayes (Section 4.1.2), which uses a probabilistic model, and the support vector
machine approach (Section 4.1.3), which relies on the large margin principle. In
addition to these, a custom classi�cation approach has been developed in Section
4.2. This approach attempts to transform an example set into a condensed repre-
sentation, consisting of representative vectors per class. On this basis, 1NN based
classi�cation is performed.
The selected classi�ers are evaluated on basis of the multi-label transformation

methods selected and developed in Section 3.2: This is �rstly the power set method,

62

4.3. Evaluation

as explained in [TK07], which transforms a multi-label data set into a single-label
variant. This has been formalized by a classi�cation function of the form

h′ : X → L′

h′(x) :=
∧
l∈h(x) l

in Section 3.2.1. Practically, this induces a transformation of the original multi-
label data set into a single-label data set, by replacing each distinct set of labels
of the form {a, b, c} by a new, single label a ∧ b ∧ c. After this transformation,
standard classi�ers can be used on the example set.
Experiment results, anticipated in Section 3.2.2, proved the assumption correct,

that this approach yields a large number of labels, resulting in only moderate
classi�cation quality. To solve this issue, a method for reducing the number of
distinct multi-label sets has been developed in Section 3.3.3. This method replaces
a number of similar label-sets with a new one, using frequent term-based clustering.
Section 3.3.4 already evaluated the feasibility of the developed technique to reduce
the number of generated power set labels signi�cantly.
A leading question for the following evaluation is therefore, if the classi�cation

quality can be raised by applying the label reduction technique before the power
set method?
In the following Section 4.3.1, the evaluation criteria for experiments in this

thesis are presented. This includes the selection of two measures to determine
classi�cation quality: The classical accuracy measure and the α-accuracy as de-
�ned in [BLSB04]. Furthermore, the statistical test method of cross validation
is introduced, which is used to assess generalization performance of classi�cation
methods.
After that Section 4.3.2 presents some general information of the experiment

setup, including the topic of evolutionary parameter optimization, which has been
used for the purpose of selecting classi�er parameters.
Finally, performed experiment series are presented and evaluated: The �rst series

(Section 4.3.3) measures multi-label classi�cation quality for the three selected
standard classi�ers, on basis of the power set transformation method. Furthermore,
the results are compared to classi�cation on basis of reduced label sets. After that,
the presented quality measures (accuracy and α-accuracy) are compared. Finally,
the custom classi�cation approach is evaluated in the same manner as for the
standard classi�ers, and the results of both experiment series are compared.

4.3.1. Evaluation Criteria

In order to assess the quality of a classi�er, this thesis utilizes two quality measures:
The classical accuracy and a variation of it, adjusted to the multi-label environ-
ment, the so-called α-accuracy. In order to assess generalization performance of a
classi�er, the statistical standard method of cross validation is used.

63

Chapter 4. Classi�cation

Quality Measures

The major criterion for evaluating classi�cation approaches in this thesis is the
classi�cation quality. Two di�erent quality measures are used throughout the ex-
periments: The standard accuracy measure is generally used to evaluate classi�-
cation quality. In addition to that, the α-accuracy, de�ned by Boutell et al. in
[BLSB04], is used in order to evaluate the classi�cation performance, with special
attention to the multi-label scenario.

De�nition 26 (Accuracy):
The accuracy acc(h, E) of a classi�er h : X → L on an example set E is de�ned
as:

acc(h, E) :=
|{(~x, l) ∈ E| h(~x) = l}|

|E|

The accuracy measure determines the fraction of correctly classi�ed examples.
In contrast to that, the α-accuracy measures multi-label classi�cation quality in a
more �ne-grained way: While the accuracy measure only distinguishes correct and
incorrect classi�cations, α-accuracy also takes partly correct classi�cations into
account. The following example motivates such a measure:
Given a multi-label example e = (~x,M) as speci�ed in De�nition 4, for which

the ground truth label set is M = {a, b, c}. A classi�cation result N1 = {a, c} for
this is incorrect in terms of the classical accuracy, although 2

3
of the predicted label

set was actually correct. Similarly, a prediction N2 = {a, b, d} would be considered
incorrect by classical accuracy. The goal of a multi-label aware accuracy measure
should therefore be to weight such partly incorrect classi�cations accordingly.
The α-accuracy ful�lls these criteria and scores classi�cation results based on

their degree of correctness. Basically, two cases of partly correct classi�cations can
occur:

Missed label In the case M − N 6= ∅, not all labels from the ground truth set
of the example have been assigned by the classi�er. The classi�er
missed true labels.

False positive Here, the classi�er assigned additional labels which are not part of
the true label set: N −M 6= ∅.

The α-score of a classi�cation result considers both of these cases.

De�nition 27 (α-score):
Given two label sets M,N ⊆ L, the α-score is de�ned as

scoreα(M,N) :=

(
1− β · |M −N |+ γ · |N −M |

|M ∪N |

)α

64

4.3. Evaluation

The parameters β and γ allow to weight false positive and missed labels di�er-
ently. α is called the forgiveness rate in [BLSB04]. It permits to adjust the overall
penalty of a partly incorrect prediction: A low α value makes the scoring less dis-
cerning, while α =∞ results in the score 0 for any classi�cation error and 1 only
for completely correct labeling, which is essentially the classical accuracy measure.
It has to be noted that, for a sensible scoring, the constraints β, γ ∈ [0, 1] must
hold. Furthermore, Boutell et al. constraint β = 1 ∨ γ = 1 and α ≥ 0.
On basis of this scoring function, a new notion of accuracy is de�ned for the

multi-label case [BLSB04], which is called the α-accuracy in this thesis:

De�nition 28 (α-accuracy):
Given an example set E and a multi-label classi�er h : X → P(L), the α-accuracy
is de�ned as

accα(E, h) :=
1

|E|
∑

(~x,M)∈E

scoreα(M, h(~x))

For experiments in this thesis, the classical accuracy is generally calculated, un-
less otherwise noted. The α-accuracy is calculated additionally for experiments
involving the power set transformation method. The leading question to be an-
swered by the α-accuracy in the scope of this thesis is if incorrect predictions by a
classi�er are completely wrong in general, or if partial incorrectness occurs. In or-
der to asses this, the α scoring is simpli�ed by choosing α = β = γ = 1. This way,
di�erent types of misclassi�cation are penalized equally and the resulting score is
not scaled in terms of forgiveness:

score′α(e) := 1− |M ∩N |
|M ∪N |

The result is a 1 scoring for completely correct classi�cations and therefore in
an accuracy value which is at least equal or larger than the classical accuracy. In
case the α-accuracy is signi�cantly larger than the classical variant, this indicates
a fair amount of only partly incorrect classi�cations. Of two classi�ers which yield
a similar accuracy, the one with better α-accuracy values is considered to be of
better quality in this thesis.

Cross Validation

Cross validation (often X-validation) is a method of statistical testing, used to asses
the generalization quality of a classi�er. For this purpose, multiple experiments are
performed on di�erent samples of a data set. In one round of X-validation, the data
set is partitioned into training and test data. The training set is then used to learn
a classi�cation model, which is evaluated against the test data.

65

Chapter 4. Classi�cation

The most common form of this method is the k-fold cross validation: Here the
sample data set is partitioned into k non-overlapping sub sets (folds). For each of
these folds, a cross validation round is performed, where this fold is retained as
test data, while the remaining k−1 sub sets are used as training data. The quality
measures of all such experiments are typically averaged to assess generalization
performance.
In order to ensure that each cross validation round yields somewhat represen-

tative results, the method of strati�ed sampling is used for cross validation in this
thesis. This sampling strategy ensures that each class is properly represented in
training and test data, i.e. each class occurs with the same fraction as it occurs in
the full data set [WF05].
In general 10-fold cross validation is used for experiments, since this is the most

common setup, according to [WF05]. In case parameters are optimized using the
technique of evolutionary parameter optimization (see next Section 4.3.2), the
number of cross validation runs has been reduced, in order to shorten the run
time of experiments. However, in order to present comparable results, dedicated
experiments with the selected parameters and 10-fold cross validation have been
run in addition.

4.3.2. Experiment Setup

In order to evaluate the chosen classi�cation methods, �ve real-life data sets have
been extracted from the Twitter web service, each based on a dedicated user. While
four of these users were selected pseudo-randomly, one speci�c user was chosen,
based on a priori knowledge of his tagging behavior. Details about the data set, the
process of its extraction and a basic statistical analysis can be found in Appendix
A.
The experiments in this thesis have been performed using the RapidMiner 3

framework for rapid data mining and machine learning. The general experiment
setup is presented in following.

RapidMiner

All experiments in scope of this thesis have been run in the RapidMiner frame-
work, using default operators delivered with the framework, unless otherwise noted.
RapidMiner provides a comfortable interface for the creation and execution of data
mining and machine learning experiments. Furthermore, it allows the user to de-
velop custom operators using a plug-in mechanism. As far as possible, experiments
were built using RapidMiner standard operators. Where necessary, new operators
where implemented.

3http://rapid-i.com/content/view/181/190/ (2010-07-24)

66

4.3. Evaluation

Figure 4.6.: Classi�cation evaluation operator tree in RapidMiner

Figure 4.6 shows a prototypical experiment setup in the RapidMiner user inter-
face which is prototypical for the evaluation experiments in this chapter. Experi-
ments are structured in form of a tree of operators, while each operator receives
the results produced by previous operators. In this speci�c case, the �rst oper-
ator loads the data set and performs the multi-label transformation, including
label reduction. The following operator optimizes the parameters of the contained
SVM classi�er. For each generation of parameter values, the SVM classi�er is run
through cross validation, in order to measure its accuracy and assess generalization
performance. A more detailed explanation of experiment setups can be found in
Appendix B.

Parameter Optimization

Some classi�cation methods can be parameterized in order to adjust their behavior
to a given scenario. In the scope of this thesis, this holds for kNN and SVM (see
Section 4.1). An appropriate set of parameter values for a given classi�er on a given
data set can be obtained through an optimization process using a classi�cation
quality measure as the objective function, which is to be maximized. Experiments
serving this purpose are called parameter optimization.
The essential problem in the area of optimization problems is the search space

size, which grows exponentially in the number n of parameters to optimize, i.e.
O(2n). Even with a small amount of parameters, it is not feasible to explore the
complete search space. Without a pre-de�ned, �nite value set for each parameter,

67

Chapter 4. Classi�cation

full exploration is even impossible.
A common approach to solve this problem at least approximately, is the tech-

nique of evolutionary parameter optimization, which is used throughout this thesis
whenever parameters need to be optimized for an experiment setup. Instead of
trying to explore the complete search space of parameter value combinations, an
evolutionary algorithm is used here to maximize the accuracy of a desired classi-
�cation function.
Evolutionary algorithms realize mechanisms, inspired by biological evolution

[BS93], in order to select an optimal element from a given search space. An element
of the search space ~ai ∈ J is called an individual. An evolutionary algorithm
works round-based, subsequently generating and evaluating populations P (t) =
{~a1(t), . . . ,~an(t)} of a pre-de�ned size n. The population generated in a speci�c
round t ∈ {0, . . . ,m} of the algorithm is called a generation.
The �rst population P (0) is typically initialized arbitrarily. Subsequent popu-

lations P (t + 1) are generated through recombination, mutation and selection of
individuals from P (t). The suitability of individuals is evaluated through a �tness
function f : J → R, which typically involves the objective function of the opti-
mization problem, but is not necessarily equal to it. The end of an evolutionary
algorithm is de�ned by a stop criterion, which usually involves a certain number
of generations or a convergence threshold regarding the �tness of individuals.
A simpli�ed and slightly adjusted version of the prototypical evolutionary al-

gorithm shown by Bäck and Schwefel in [BS93], is presented in Algorithm 5. The
algorithm receives an individual de�nition, which describes how individuals look
like (e.g. number of variables, value ranges). At �rst, the initial population of
individuals is generated. This generation is evaluated. The while loop generates
subsequent generations by recombination, mutation and selection until the stop
function returns true. Finally, the best individual from the last generation is re-
turned.
In the case of classi�er parameter optimization, an individual is a speci�c com-

bination of parameter values for a speci�c classi�er. For example C, γ for the SVM
variant used within this thesis (see Section 4.3.2). The objective function here cor-
responds to the �tness function, i.e. �tness corresponds to classi�cation accuracy.
For experiments in this thesis, the standard settings for evolutionary parameter

optimization in RapidMiner were used:

• populations consist of �ve individuals

• the optimization process stops latest after 50 generations or if a generation
does not yield �tness improvement in respect to its predecessor

• the Gaussian mutation operator is used, in combination with selection by
tournament.

68

4.3. Evaluation

Algorithm 5 Prototypical evolutionary algorithm.
function EvolutionaryOptimization(individual de�nition def)

t := 0
P (t) := {~a1(0), . . . ,~an(0)|~ai ∈ def}
Evaluate(P (t))
while ¬Stop(P (t)) do

P ′(t) := Recombine(P (t))
P ′′(t) := Mutate(P ′(t))
Evaluate(P ′′(t))
P (t+ 1) := Select(P ′′(t))
t := t+ 1

end while
return Optimum(P (t))

end function

A detailed overview on the topic of evolutionary algorithms for parameter opti-
mization can be found in [BS93].

Classi�er Speci�cs

For experiments in this thesis, the following special settings apply to the used
classi�ers.
The kNN classi�er needs a single parameter k, which determines the number of

training examples taken into account for classi�cation. This parameter has been
determined by evolutionary parameter optimization as described. For each indi-
vidual parameter value, cross validation is performed as described in Section 4.3.1.
The operator shipped with RapidMiner has been used for kNN experiments.
Some problems occurred with the NaiveBayes operator shipped with Rapid-

Miner in scope of experiments in Chapter 5: This operator produces a model,
which cannot be updated with new classes, which occur in streaming experiments.
Therefore, a custom Naive Bayes operator has been implemented, which supports
this feature. Since the Naive Bayes does not provide any parameters, no optimiza-
tion was necessary. Therefore, this classi�er has been evaluated only with 10-fold
cross validation.
The SVM classi�er shipped with the RapidMiner framework has been used for

the evaluation experiments. It is backed by LibSVM [CL01]. As recommended in
[wHcCjL03], the C-SVC [SSMB00] implementation on basis of the Gaussian RBF
kernel

kGauss(~x1, ~x2) = exp(−γ‖~x1 − ~x2‖2)

has been chosen. According to [KL03] this kernel behaves similarly to the linear
SVM for some parameter combinations. Furthermore, the sigmoid kernel, with

69

Chapter 4. Classi�cation

some parameter combinations, behaves similarly to RBF [tLjL03]. Therefore, this
kernel is a good choice for initial experiments according to [wHcCjL03]. For more
information on the kernel trick, see Section 4.1.3.
Evolutionary parameter optimization was used to determine the parameters for

this SVM setup, which are the parameter of the Gaussian kernel γ and the cost
parameter C for misclassi�cation penalty in C-SVC. Because SVM training is quite
computation time intensive, not only the number of cross validation runs had to
be reduced to run experiments in reasonable time: In addition, the evolutionary
parameter optimization settings were adjusted. The maximum number of genera-
tions in the evolutionary parameter optimization has been reduced from 50 to 20.
Experiments with the standard settings had to be canceled after approximately
5 days of continuous running. Even with these settings, experiments with many
examples about 1.5 days.

4.3.3. Experiments

This chapter evaluates classi�cation based on the power set multi-label transfor-
mation method, described and selected in Section 3.2.1, without and with the
label-reduction approach developed in Section 3.3.3. For this evaluation, the stan-
dard classi�ers kNN, Naive Bayes and SVM (Section 4.1) have been used, as well
as the custom class representative based classi�cation approach (Section 4.2). The
leading questions for this evaluation are:

1. How well do the selected classi�cation approaches perform in the scenario of
this thesis?

2. Does label reduction improve the classi�cation quality, as expected?

3. Are misclassi�cations in general completely incorrect or do partial misclas-
si�cations occur?

4. How does the custom classi�cation approach perform, in comparison to the
selected standard classi�ers, especially in respect to kNN?

In order to answer these questions, experiment results are presented in the fol-
lowing. These have been run on �ve user-based data sets, which were sampled from
the Twitter web services (Appendix A).

Multi-Label Classi�cation

The �rst experiment series is dedicated to evaluating the selected standard classi-
�ers � kNN, Naive Bayes and SVM � on basis of the power set multi-label transfor-
mation method. This technique transforms a multi-label data set into a single-label
variant by replacing each distinct label set with a unique, single label. Details on
the transformation have already been presented in Section 3.2.1.

70

4.3. Evaluation

Figure 4.7 shows the accuracy of the evaluated classi�ers for each of the �ve user
samples, as assessed by 10-fold cross validation (Section 4.3.1). In the background,
the blue bar visualizes the number of power set labels generated for the speci�c
data set. The green bar shows the number of labeled examples, i.e. such that can
be used for evaluation. Both in relation to the right value axis.
The chart shows, that classi�ers perform generally worse on data sets with many

labels (Reference and User 3), than on such with fewer labels. Furthermore, the
number of available training examples seems to have in�uence to the classi�cation
accuracy. Both is expected. It has to be noted, that the data set User 4 consists
of really few labeled examples (20), but also has only 4 di�erent labels.

labels

examples

Naive Bayes

kNN

SVM

Reference User 1 User 2 User 3 User 4

Accuracy

0

0.25

0.5

0.75

1

0

250

500

750

1000

1250

Figure 4.7.: Accuracy of the standard classi�ers on power set labels.

Interestingly, the SVM performs not as well as other classi�ers, although the
determined parameters indicate severe �tting (see Table 4.1), according to [KL03].
Only on the data set User 2, SVM outperforms the kNN classi�er. As expected in
Section 4.1.2, the Naive Bayes classi�er performs very well compared to the others,
yielding an accuracy of up to 0.75 on a data set with few number of labels. Overall
better performance on data sets with fewer labels already forti�es the assumption
that label reduction will increase classi�cation quality.
In order to assess if the label reduction method, developed in Section 3.3.3, is

feasible to increase classi�cation accuracy, a second experiment series has been
run with the same setup, but involving label reduction. Figure 4.8 visualizes the
results. The results of classi�cation on the example set without label-reduction,
presented in Figure 4.7, are given as a reference in pale color.
The experiment shows that reducing the number of labels indeed raises classi�-

cation accuracy. This e�ect is more intensive on data sets with a large number of
labels, as expected. As already presented in Section 3.3.4, the data sets Reference
and User 3 experienced a signi�cant reduction by 0.57 and 0.39. In contrast to
that, for the data sets User 2 and 3 the number of labels was only reduced by
a very small fraction. User 4 contains only 4 labels and no reduction is possible,
therefore no e�ect to classi�cation accuracy is visible.

71

Chapter 4. Classi�cation

SVM

SVM (FTC)

kNN

kNN (FTC)

Naive Bayes

Naive Bayes (FTC)

Reference User 1 User 2 User 3 User 4

Accuracy

0

0.25

0.5

0.75

1

Figure 4.8.: Accuracy of the standard classi�ers on reduced power set labels.

The Naive Bayes classi�er is most sensitive to label reduction. The rationale
for this is assumed to be, that with fewer labels, the corresponding conditional
probability values (see Section 4.1.2) become more margined, which leads to a
clearer division. The kNN classi�er does not perform comparably better on the
reduced label data sets. Still, a slight improvement is visible on the Reference
data set. Although data set User 3 also experienced a signi�cant label reduction,
kNN does not perform signi�cantly better. It is assumed, that this is a result of
the data points not being linearly separable. In this case, kNN might not �nd a
correct majority decision among the nearest neighbors. Details on the function of
the kNN classi�er have been presented in Section 4.1.1.

The optimized parameters - k for kNN, C and γ for the SVM (see Section 4.3.2)
- are presented in Table 4.1.

Reference User 1 User 2 User 3 User 4

SVM
C ∞ ∞ ∞ ∞ ∞
γ 1.8e+ 7 2.2e+ 7 5.6e+ 7 5.6e+ 7 5.6e+ 7

SVM (FTC)
C ∞ ∞ ∞ ∞ ∞
γ 6.2e+ 7 5.6e+ 7 2.2e+ 7 6.2e+ 7 5.6e+ 7

kNN k 221.00 70.00 221.00 70.00 221.00

kNN (FTC) k 70.00 70.00 221.00 70.00 221.00

Table 4.1.: Overview on parameters for SVM and kNN, with and without label
reduction.

72

4.3. Evaluation

Accuracy vs. α-Accuracy

In order to determine if classi�cations are generally incorrect or if there exist
partial inaccuracies, for the experiments described in the last Section 4.3.3, the α-
accuracy (see Section 4.3.1) has been evaluated as well. The alpha accuracy does
not only distinguish between correct and incorrect classi�cation, but is adjusted
to the multi-label environment: It scores a classi�cation result by its degree of
correctness. This takes labels into account, which have not been predicted, but
occur in the true label set and as such have been predicted false positively.

Table 4.2 presents the accuracy and α-accuracy values for the standard classi�ers
on the power set labeled data set and the data set with reduced labels. As can
bee seen, both accuracy measures do not vary signi�cantly. For the power set
labels, the α-accuracy is occasionally better than the classical measure, indicating
that there are some partly corrected classi�cations. On the reduced label set, the
measures result in exactly the same values, at least for the �rst two decimal places.
This appears to mirror the label reduction mechanism exactly: Multiple label sets
with similar labels are replaced with a single frequent term set. For details on this
method, please refer to Section 3.3.3.

Reference User 1 User 2 User 3 User 4 Avg.

Power set labels

Naive Bayes
(acc.) 0.35 0.75 0.66 0.36 0.50 0.52± 0.16
(α-acc.) 0.38 0.75 0.68 0.38 0.55 0.55± 0.15

kNN
(acc.) 0.19 0.56 0.36 0.23 0.50 0.37± 0.14
(α-acc.) 0.22 0.56 0.36 0.24 0.55 0.39± 0.15

SVM
(acc.) 0.17 0.31 0.42 0.19 0.50 0.32± 0.13
(α-acc.) 0.18 0.31 0.42 0.20 0.55 0.33± 0.14

Reduced power set labels

Naive Bayes
(acc.) 0.61 0.83 0.79 0.55 0.55 0.67± 0.12
(α-acc.) 0.61 0.83 0.79 0.55 0.55 0.67± 0.12

kNN
(acc.) 0.34 0.55 0.38 0.23 0.60 0.42± 0.14
(α-acc.) 0.34 0.55 0.38 0.23 0.60 0.42± 0.14

SVM
(acc.) 0.23 0.31 0.44 0.12 0.60 0.34± 0.17
(α-acc.) 0.23 0.31 0.44 0.12 0.60 0.34± 0.17

Table 4.2.: Accuracy values vs. α-accuracy.

73

Chapter 4. Classi�cation

Custom Classi�cation Approach

Finally, an experiment series with the custom classi�cation approach developed
in Section 4.2 has been performed on both multi-label transformation approaches:
Pure power set and label reduced power set transformation. The developed classi-
�er performs 1NN classi�cation on a condensed representative per class. In order
to generate a representative for the examples of a speci�c class, three di�erent
approaches have been considered: Calculating the average vector, choosing the
median example and choosing well scattered points.

Avg. repr.

Avg. repr. (FTC)

Med. repr.

Med. repr. (FTC)

WSP repr.

WSP repr. (FTC)

Reference User 1 User 2 User 3 User 4

Accuracy

0

0.25

0.5

0.75

1

Figure 4.9.: Accuracy of the developed classi�cation approach on reduced power
set labels. Results on pure power set labels are in pale color.

Figure 4.9 visualizes the results of the di�erent representatives. In pale color,
the accuracy on basis of the pure power set method is shown, strong colors show
the results on basis of the reduced power set labels. Results on basis of the av-
erage vector representative are shown in red, the median representative appears
green, and the technique of well scattered points is shown in brown. Without label
reduction, the average vector representative outperforms both others clearly. Also
interestingly, the median and the well scattered points representatives are about
equally accurate without label reduction.
As expected, all representative generation methods perform better with reduced

number of labels. The average vector representative still shows top performance af-
ter the number of labels has been reduced. Interestingly, in this setup the well scat-
tered points representative even slightly outperforms the average centroid. How-
ever, the generation of the average centroid involves less computational e�ort and
is therefore considered further in this thesis. The tiny enhancement yielded by the
well scattered points representative is not considered to compensate the higher
computation time and storage consumption.
Figure 4.10 �nalizes the evaluation, showing both classi�cation approaches with

the highest accuracy on the label reduced data sets: The Naive Bayes classi�er
from the set of standard classi�ers and the custom representative based classi�ca-
tion approach with average vector representative. Interestingly, both classi�cation

74

4.3. Evaluation

Naive Bayes (FTC)

Avg. repr (FTC)

Reference User 1 User 2 User 3 User 4

Accuracy

0

0.25

0.5

0.75

1

Figure 4.10.: Naive Bayes vs. custom classi�cation approach on label reduced
data sets.

approaches are about equally accurate on four of �ve data sets: The 1NN approach
on class representatives outperforms Naive Bayes slightly on the data sets Refer-
ence, User 1 and User 3, while the Naive Bayes classi�er performs slightly better
on the User 2 data set. Interestingly, the di�erence in classi�cation accuracy is
much wider for the User 4, Naive Bayes has only an accuracy value of 0.55 while
the classi�cation approach developed in Section 4.2 yields 0.85. The result of this
is an average accuracy of 0.75± 0.12 for the custom classi�er and 0.67± 0.12 for
Naive Bayes.

75

Chapter 5

Streaming

The problem of tag prediction in micro-blogging systems is a multi-label classi�ca-
tion task, for which Chapter 3 selected the power set method, in order to transform
it into a single-label problem. Furthermore, a custom approach for reducing the
number of resulting labels has been developed in this chapter. Chapter 4 evaluated
three standard classi�ers - kNN, Naive Bayes and SVM - on this basis. In addition,
a custom classi�cation approach, based on kNN, applied on a condensed version
of the data set, which involves the generation of a representative set of vectors
per class. Experiments turned out, that the Naive Bayes approach, as well as the
custom classi�cation approach, perform best in the given scenario.
In Section 2.3.2, it has been noted that a classical batch algorithm could be used

to implement tag prediction for micro-blogging in form of a web service. However,
it is desired to create a stream classi�cation approach instead, in order to perform
anytime prediction.
Stream based data mining and machine learning are hot topics in research for

the past years. Typical applications for data stream models include sensor data
processing ([str02]) and log analysis ([BJC+04]). The motivation for a stream pro-
cessing approach is usually the large amount of data to be processed and the
velocity of its occurrence, which renders it impossible to store the whole data set
to perform multiple database runs or to keep it in memory for random access.
This motivation is not immediately evident in the environment of this thesis:

Micro-blogging entries are considered on a per user basis and while some users
produce a lot of entries per day, this amount of data does not reach dimensions
where storage and multi-pass processing is unfeasible. However, the objectives
de�ned in Section 2.3 prescribe the developed approach to be usable in a web
service environment. It cannot be expected that the users of such a web service
provide a sensible amount of example data to train a fully functional classi�er.
Furthermore, it is expected that users tagging behavior changes over time and the
trained classi�er should adjust to these changes. Therefore an anytime algorithm
is desired, which is capable of classifying a new example at any given point in time,
even if not with full accuracy.
For these reasons, it has been attempted to embed the classi�cation approaches

selected and developed throughout this thesis into a data stream environment, in
order to approach the following demands:

1. Successively train the classi�er in an anytime manner to allow recommenda-

77

Chapter 5. Streaming

tions whenever requested.

2. Detect changes in the tagging behavior of a user and adjust the classi�er
accordingly.

The subsequent structure of this chapter is as follows: The next Section 5.1
gives a general introduction into the stream data model used in this thesis and
presents a prototype stream classi�cation algorithm. This algorithm only provides
a template, which is to be �lled with three di�erent model update strategies, in
order to evaluate stream classi�cation possibilities (Section 5.3) for tag prediction
in micro-blogging services. The �rst strategy is very simple and deals as the base
line: Here, a new classi�cation model is trained for every stream window. The sec-
ond approach attempts to update a once trained classi�cation model continuously
with new stream data. Finally, the third strategy is most complex and attempts to
detect changes in users tagging behavior using the StreamKrimp algorithm by van
Leeuwen and Siebes ([vLS08]), in order to adjust the classi�er correspondingly.
The StreamKrimp algorithm is described in detail in Section 5.2, then Section
5.3 describes the three stream classi�cation approaches end presents an empiri-
cal evaluation of these approaches, in combination with the two best performing
classi�cation approaches from Chapter 4: Naive Bayes and the custom developed
representative based classi�cation technique.

5.1. Stream Basics

To specify stream based classi�cation, De�nition 6 already presented the formal
de�nition of a data stream in Section 2.3.2. A data stream is a �nite or in�nite
set of examples S = {e1, . . . , en, . . . }, which are sorted in an ascending, typically
temporal, order ≺S, such that

∀ei, ej ∈ S : i < j ⇒ ei ≺S ej

holds.
To model the processing of data streams, a window approach is typically used.

Such a stream window de�nes, which portion of a stream can be accessed by a
processing algorithm at a given point in time, in order to model the infeasibility
of random access to stream data. De�nition 29 speci�es the syntax for stream
windows used within this thesis.

De�nition 29 (Stream window):
A window Si,j := {ei, . . . , ej|ex ∈ S} on a stream S is a set of (i− j) consecutive
examples from S, de�ned by two end points i and j. A single example from a stream
is denoted by Si := ei.

78

5.1. Stream Basics

Stream windows are occasionally denoted as a �nite sub-stream. The evolution
of a stream can be emulated by changing the window end points in a positive
direction. In [GÖ03], di�erent types of windows over data streams are characterized
by several criteria as follows:

Movement A �xed window is de�ned by two �xed end points, while two
moving end points de�ne a sliding window. In each step i and
j are usually incremented by the same amount. A window
where only one end point moves is called a landmark window.

Physical vs. logical Windows on data streams can either be updated by time or
by element count. Physical, or time-based, windows are up-
dated after a certain amount of time elapsed. The number of
new examples in the window may vary. Logical windows are,
in contrast to that, updated whenever a certain amount of
new examples arrive in the stream. The time between win-
dow updates may vary.

Update interval If a window is updated on each arrival of a new example, this
is called eager re-evaluation, while updates based on an exam-
ple batch are denoted as lazy re-evaluation. The latter update
procedure in general induces a jumping window, if the size
of the update batch matches the window size. If the update
batch exceeds the window size, a series of non-overlapping
tumbling windows is produced.

Figure 5.1 visualizes the di�erent described stream window approaches.

Figure 5.1.: Di�erent stream window models

In scope of this thesis, a logical jumping window approach is considered: When-
ever a de�ned number of examples have arrived, the classi�cation model is to be

79

Chapter 5. Streaming

updated. The decision for a jumping window is based on the label-reduction tech-
nique developed in Section 3.3.3, which relies on frequent item set mining. On
this basis, a continuous update of the classi�cation model is infeasible, since it
prevents a proper label reduction. Furthermore, a time based update is considered
infeasible, since the update frequency varies widely among users.
On this basis, Algorithm 6 presents a template for simple stream classi�cation.

This template is used to realize and evaluate three di�erent stream classi�cation
approaches in the following. The function StreamClassification() function
retrieves a stream and a logical window size. It �rst initializes an empty model,
since no examples have been received for training, yet. During the subsequent
iteration over the stream, each new example is classi�ed. The practical response of
a predicted tag set to the user is indicated by the Notify() function call. When
ever winSize examples have been bu�ered, the classi�cation model is updated
within UpdateModel(). This function is used later in this chapter to implement
di�erent model update strategies.

Algorithm 6 Template stream classi�cation algorithm.
function StreamClassification(stream S, int winSize)

i := 0
j := 0
h := EmptyModel()
while ¬StreamEnd(Sj) do

Notify(h(Sj))
if j = i+ winSize− 1 then

UpdateModel(h, S, i, j)
i := i+ winSize

end if
j := j + 1

end while
end function

It has to be noted, that this algorithm su�ers from the so-called bootstrap prob-
lem, i.e. no classi�cation model is available until the �rst stream window is com-
pletely processed. Finding a solution to this problem is left for later research.
Based on the requirements presented in the introduction of this chapter, the

StreamKrimp algorithm by van Leeuwen and Siebes [vLS08] has been selected in
order to detect changes in tagging behavior of a user. StreamKrimp attempts to
detect changes in the probability distribution of frequent item sets on a stream,
based on the minimum description length (MDL) principle. In order to assess
changes in tagging behavior, StreamKrimp is applied to the label sets in scope of
this thesis.

80

5.2. Detecting Changes in Streams

Two main reasons motivate the choice of StreamKrimp: Firstly, it is expected
that changes in the probability distribution of tag sets indicate a change of tagging
behavior. Secondly, frequent item sets are already used for the label reduction
technique developed in Section 3.3.3, so re-using them appears sensible.
In order to assess the feasibility of StreamKrimp to detect changes in the tag-

ging behavior and therefore yield a potential classi�cation quality enhancement,
the corresponding model update strategy will be compared to two simply stream
approaches: The �rst one returns a new model, trained on the recent stream win-
dow, on every call to UpdateModel() call. The second simple variant trains a
new model only on the �rst window and updates it with the training data of every
subsequent window.

5.2. Detecting Changes in Streams

One essential goal of this chapter is to attempt detection of changes in the tag-
ging behavior of a user. It is expected, that detecting such changes and adjusting
classi�cation models accordingly can yield an improvement of overall classi�ca-
tion quality. In order to detect changes in the tagging behavior, the StreamKrimp
algorithm by van Leeuwen ans Siebes ([vLS08]) is applied to the label sets.
The StreamKrimp algorithm attempts to detect changes in the probability dis-

tribution of frequent item sets in a stream. The algorithm utilizes the concept of
minimum description length and a there implied coherence between probability
distribution and optimal encoding. StreamKrimp works on a logical jumping win-
dow model, examining a �xed number of newly arrived examples at a time. The
algorithm utilizes the Krimp algorithm ([SVvL06]) to detect the distribution of
item sets in stream data.
In following, the Krimp algorithm is explained �rst, introducing the concept of

encoding a transactional database through frequent item sets and the relation be-
tween optimal encoding and probability distribution. After that, the StreamKrimp
algorithm is explained on that basis.

5.2.1. Krimp

The original motivation of the Krimp algorithm was to select an interesting subset
of frequent item sets, because a frequent item set analysis yields typically huge
number of item sets, including a large amount of redundant data. This behavior is
closely related to the monotonicity property of frequent item sets (Section 3.3.1),
i.e. if an item set is frequent, all its subsets are frequent, too. There exist several
other approaches that attempt to prune sets of frequent item sets in order to make
human inspection more comfortable, for example lift [ST96] and constraining item
sets to be closed [Zak98].

81

Chapter 5. Streaming

In order to select a subset of frequent item sets, the Krimp algorithm attempts
to encode the corresponding transactional database through it. Encoding in this
case means, that a transaction is replaced by references to the item sets it consists
of. To measure if a selected set of item sets is well chosen, Krimp utilizes the
approach of minimum description length.
The minimum description length principle can roughly be described as follows:

From a set of models H, the optimal model H ∈ H is the one that minimizes

L(H) + L(D|H) (5.1)

where L denotes a function which returns the length in bits, which are necessary to
describe a given object. That means L(H) is the bit-length of the description of the
model H and L(D|H) is the length of a database D when being encoded using the
model H. If the sum of the description length of the model and the data encoded
in the model is minimal, the model is considered optimal. Extensive information
on the principle of minimum description length can be found in [Grü05].
The Krimp algorithm attempts to encode a given transactional database through

frequent item sets mined from it. That means, a set of frequent item sets is chosen,
which allows to replace every transaction in the database by a set of references
to frequent item sets. The goal is to �nd a subset of all frequent item sets, which
encodes the given database optimally. In the sense of MDL, the model here consists
of a set of frequent item sets and some kind of code on it. A transactional database
can then be encoded by this model as de�ned in following. In order to satisfy MDL,
the subset of frequent item sets is to be found, which minimizes the description
length as de�ned in Equation 5.1.

Encoding a Database

In order to de�ne the encoding of a transactional database on the basis of frequent
item sets, Siebes et al. specify the term cover di�erently, compared to the de�nition
given earlier in Section 3.3.1:

De�nition 30 (Item set cover):
Let C ⊆ I be a set of frequent item sets from a transactional database D. C is called
an item set cover for D, i� for each transaction (t, It) ∈ D, a subset C(t) ⊆ C exists
for which

1. It =
⋃
I∈C(t) I

2. ∀Ix, Iy ∈ C(t) : Ix 6= Iy ⇒ Ix ∩ Iy = ∅

holds. It is said that C(t) covers t.

De�nition 30 speci�es the conditions that must be ful�lled by a subset of item
sets C ⊆ I in order to encode a transactional database D: C must be such that

82

5.2. Detecting Changes in Streams

each transaction (t, It) ∈ D can be replaced by references to a number of item
sets in C, without loss of information. In order to de�ne the actual encoding of a
database, the principle of a coding scheme is introduced in De�nition 31.

De�nition 31 (Coding scheme):
A coding scheme CS for a transactional database D is a tuple (C, S), where C is
an item set cover for D and S is a function S : D → P(C) such that S(t) covers t.

So, a coding scheme consists of a set of item sets C, which covers a database and a
function S, which maps each transaction to the set of item sets which are necessary
to encode it. Obviously, this construct can be used to encode the transactional
database, for example by assigning a unique integer number to each item set and
replacing each transaction with the corresponding numbers determined by S.
However, Krimp does not search for an arbitrary coding set, but the one which

yields the smallest compression in terms of MDL. In order to measure the size of
the desired encoded database, a correspondence between codes and probabilities is
exploited: If P is a probability distribution on a �nite set K, a unique code exists
for K, such that for the length of an element L(k), k ∈ K

L(k) = − log(P(k)) (5.2)

holds. This code does not only exist, but is also known to the be optimal for any
dataset which is drawn according to P . A coding set actually induces a probability
distribution on its set of frequent item sets through the mapping function S. The
distribution is determined by the relative frequency of an item set to be used to
cover a transaction.

freq(I)∑
I′∈C freq(I

′)

Replacing this probability into Equation 5.2 and adding up over all item sets yields
the size of the database when being encoded by an optimal code on the item sets:

L(C,S)(D) = −
∑
I∈C

freq(I) log

(
freq(I)∑

I′∈C freq(I
′)

)
(5.3)

While this does not yield a concrete code, it allows to calculate the size of the
encoded database when being encoded with such a code, which allows to calculate
the part L(D|H) of the MDL formula in Equation 5.1.

Encoding a Model

L(D|H), from the MDL formula in Equation 5.1, can now be calculated, given an
optimal code over item sets. Still the term L(H), which denotes the description
length of the encoding model, is to be calculated. One part of an encoding model

83

Chapter 5. Streaming

H has already been described in the last section: A coding scheme. However, the
code itself is still missing.
One way to describe a model would be to use a speci�c encoding / decoding

table, which maps each item set from a coding scheme to all transactions which
need the item set to be encoded. But, listing all transactions encoded with a given
item set would lead to quite a large code table, utilizing at least n log(n) bits for
a database of size n: n times log(n) bits for the pointer to each transaction. In
addition, such a table does not yet describe the actual code in terms of a code
word corresponding to an item set.
To ship around these issues, Siebes et al. introduce the simple algorithm

Cover() (Algorithm 7). The algorithm presumes an arbitrary order < on the
given set of item sets C. Furthermore, it requires that C contains at least all sin-
gleton item sets:

∀I ∈ I : |I| = 1⇒ I ∈ C

Such a set of item sets is denoted as a coding set (De�nition 32).

De�nition 32 (Coding set):
An ordered set of item sets, which contains at least all singleton item sets, i.e.
|I| = 1, is called a coding set. Its order, referred to as coding order is denoted by
<.

Algorithm 7 is not only well-de�ned on any coding set C and any transaction
(t, It) over the same items, it also de�nes a unique code table (De�nition 33), given
a �tting order in the coding set.

Algorithm 7 The algorithm encodes a transaction uniquely on basis of a coding
set, by recursively selecting the �rst matching item set until the full transaction is
covered.
function Cover(coding set C, transaction (t, It))

S := min{I ∈ C|I ⊆ It}
if It \ S = ∅ then

Res := S
else

Res := S ∪Cover(C, (t, It \ S))
end if
return Res

end function

De�nition 33 (Code table):
Given a coding set C and a set of codes K. CT ⊆ C ×K is a code table i�

84

5.2. Detecting Changes in Streams

• ∀(Ix, kx), (Iy, ky) ∈ CT : Ix = Iy ⇒ kx = ky

• ∀(I, k) ∈ CT : L(k) = − log(P(I))

where P(I) is the probability of I in the code scheme for database D, induced by C
and Cover().

In terms of minimum description length, a code table is a model, which can be
used to encode a given database. In order to calculate the MDL formula (Equation
5.1), the size of such a model needs to be calculated. The size of the right side
of the code table is obvious: Each assigned code has a speci�c length, denoted by
− log(P(I)), which must only be summed up for all codes. Leaves the left side: In
order to encode the item sets used for encoding the database, Siebes et al. de�ne
the so called standard encoding (De�nition 34), which consists of a code table that
only utilizes singleton item sets.

De�nition 34 (Standard encoding):
The standard encoding for an item set I for a given database D over I is the
encoding de�ned by the coding set CSt := {{i}|i ∈ I} of all singleton item sets.

Obviously, the standard encoding is the same for all potential coding sets over a
certain database. It therefore makes the encodings comparable. On this basis, the
description length for a code table CT , i.e. a model, can be de�ned as:

L(CTC) =
∑

I∈C:freq(I)6=0

(Lst(I) + LC(I)) (5.4)

where Lst(I) denotes the length of the item set I when being encoded by the
standard encoding. LC(I) determines the length of the code assigned to an item
set I in the code table CT .
This �nally yields the full description length needed to calculate the MDL for-

mula in Equation 5.1:

LC(D) = L(C,SC)(D) + L(CTC) (5.5)

The description length of the encoded database has been presented in Equation
5.3, while the description length for the encoding model itself has been presented
in Equation 5.4.

Minimal Coding Set Heuristic

Now that the calculation of the description length has been speci�ed in Equation
5.5, the problem of �nding a code for a given database is tackled. The goal of the
presented algorithm is to �nd a coding set C for which LC(D) is minimal. Since

85

Chapter 5. Streaming

almost any arbitrary subset of the set of frequent item sets is allowed as a coding
set, the size of the search space is bound by O(2n), where n is the number of
frequent item sets. Furthermore, a coding set has been de�ned as being ordered
(De�nition 32), so a �tting order needs to be found in addition to the item sets
themselves. This yields an upper bound of O(n!) for possible orders. Resulting in
the size of the search space to be bound by O(2nn!).

Algorithm 8

function NaiveCompression(items I, item sets C, database D)
CS := Standard(I, db)
C := C \ I
candidates := CoverOrder(C, D)
while candidates 6= ∅ do

cand := max(candidates)
candidates := candidates \ {cand}
canCS := CS ∪ {cand}
if LcanCS(D) < LCS(D) then

CS := canCS
end if

end while
return CS

end function

In [SVvL06], four di�erent algorithms are de�ned for the purpose of �nding
an optimal coding set, while this thesis considers only the very basic version to
determine the general feasibility of the StreamKrimp approach for the problem
of detecting changes in tagging behavior. The greedy approach NaiveCompres-
sion() (Algorithm 8) starts with the standard coding set and subsequently tests
if adding a speci�c item set yields a better compression. If the description length
decreases, the item set is kept, otherwise it is discarded.
The crucial point in Algorithm 8 is to determine the place in the code table,

where a new item set should be inserted. Determining the optimal place could for
example happen on basis of the Cover() function, but this would yield another
huge search space to be explored. Therefore the standard order of item sets in a
coding set is de�ned by Siebes et al.

De�nition 35 (Standard order):
Given a database D and a set of item sets C. C is in standard order, i� for all
I1, I2 ∈ C holds

• |I1| ≤ |I2| ⇒ I1 �C I2

• |I1| = |I2| ∧ support(I1,D) ≤ support(I2,D)⇒ I1 �C I2

86

5.2. Detecting Changes in Streams

Siebes at al. concede that the standard order (De�nition 35) is just a heuristic,
but any better ordering technique would involve far more computational e�ort.
In Algorithm 8, the CoverOrder() function returns a coding set on basis of
standard order. The NaiveCompression() algorithm is used in this thesis, in
combination with the StreamKrimp algorithm, to detect changes in the probability
distribution of label sets on a stream.

5.2.2. StreamKrimp

The heuristic Krimp algorithm, presented in the last Section 5.2.1, attempts to
determine the set of frequent item sets, which compress a given database opti-
mally in a minimum description length sense. Siebes et al. have shown empirically
in [SVvL06], that this approach works rather well. The StreamKrimp algorithm,
which is to be explained in the following, is based upon Krimp. It utilizes the
correspondence between optimal codes and probabilities, noted in Equation 5.2,
to determine changes in the probability distribution of frequent item sets on a
stream. The basic idea here is, that if the optimal coding set changes on subse-
quent sub-streams, a change in the distribution is inherent.
More formally, it is assumed, that a given stream S consists of a, potentially

in�nite, set of sub-streams S = S1S2S3 . . ., for which holds that each Si is drawn
i.i.d. from a distribution Pi over P(I) and ∀i ∈ N : Pi 6= Pi+1. The StreamKrimp
algorithm attempts to identify the Si, i.e. to detect subsequent sub-streams of S,
such that each sub-stream conforms to a dedicated distribution, which is di�erent
from the distribution of its predecessor and successor sub-streams.
In order to achieve this goal, the StreamKrimp algorithm must essentially ful�ll

the following two requirements.

1. Detect the distribution on a sub-stream.

2. Detect the point where this distribution changes.

In the following, it is described how StreamKrimp honors these requirements.

Detecting Distributions

Siebes et al. �rst consider the problem of detecting distributions on �nite streams.
Equation 5.2 showed, that a probability distribution can be re�ected through op-
timal coding. Therefore, the problem can be reformulated as follows:
A set of consecutive sub-streams on a �nite stream S = S1 . . . Sk is to be de-

tected, such that
k∑
i=1

L(CT opt, Si)

87

Chapter 5. Streaming

is minimized. L(CT opt, Si) denotes the length of the encoded code set, consisting
of Si and its optimal code table CT opt, as described in Equation 5.5. Practically
that means to partition the given stream, such that the over all description length
of S is minimized.
However, this formulation assumes that the whole stream S is known. It is

generally not possible to project this minimization problem directly to the in�nite
case, because there is no guarantee that an optimal partitioning of a �nite stream
U = ST coincides with an optimal partitioning for S on the S-part of U [vLS08].
StreamKrimp therefore concentrates on a locally optimal solution and utilizes

the fact that the empirical probability distribution converges against the real dis-
tribution: For a stream S, which is i.i.d., drawn from a single distribution Q,

∀I ∈ I : lim
n→∞

P (I|S1,n) = Q(I)

holds. Here, P (I|S1,n) denotes the empirical probability for an item set I ∈ I on
the �rst n items of stream S. Q(I) denotes the items real probability distribution.
From this observation and the correspondence between probability and optimal
coding (Equation 5.2) follows, that the optimal coding table on stream S converges
as well.
In order to measure when a code table can be considered as converged, Siebes

et al. introduce the improvement rate measure, which is speci�ed as follows:

De�nition 36 (Improvement rate):
The improvement yielded by a code table CTn+k, generated on a sub-stream S1,n+k,
in comparison to its predecessor CTn is de�ned by

IR(CTn, CTn+k) =
|L(S1,n, CTn)− L(S1,n, CTn+k)|

L(S1,n, CTn)

Practically, when the improvement rate becomes small in an absolute sense, it
may be concluded that CTn has converged and that the distribution of the sub-
stream has been detected to a su�cient degree. Algorithm 9 provides a function,
which is used in the StreamKrimp algorithm for the purpose of detecting a con-
verged code table.
Algorithm 9 converges a Krimp code table on a stream S, starting from position

start. The blockSize determines the jumping window size. The Krimp() function
here wraps NaiveCompression() (Algorithm 8) or any other Krimp algorithm
described in [SVvL06], and performs the mining of item sets more frequent than
supmin with a suitable algorithm, e.g. FPGrowth.

Detecting Distribution Changes

Once the distribution of a sub-stream has been detected, the next requirement
is to detect when this distribution changes on the stream. On the basis of the

88

5.2. Detecting Changes in Streams

Algorithm 9 Converging a Krimp code table on a stream.
function FindCodeTableOnStream(stream S, int i, int blockSize, int
supmin, �oat maxIR)

n := blockSize
CT := Krimp(Si,i+n, supmin)
ir :=∞
while ir > maxIR do

n := n+ blockSize
newCT := Krimp(Si,i+n, supmin)
ir := ComputeIR(CT, newCT)
CT := newCT

end while
return codeTable

end function

convergence of code tables, deduced in the last section, the naive idea would be to
generate coding tables on consecutive stream chunks and compare their encoding
quality to the previously converged code table. However, this would consume a fair
amount of computation time. Therefore, Siebes et al. apply a statistical test, which
compares the encoded size of a subsequent transaction block to the size expected
for a block of this size.
After a code table converged, the sub-stream used to converge it is not imme-

diately discarded. Instead, random chunks of the de�ned block size are sampled
from it and their encoded size is computed. After a lower and upper leave-out
fraction is removed from the resulting set of sizes, the smallest and largest sizes
are taken as boundaries for the encoded size of subsequent chunks. If the size of a
new stream chunk, encoded with the converged code table, does not break with the
expected boundaries, the block is considered to belong to the previously detected
distribution. Otherwise, the full test of converging a new code table is applied in
order to determine if a change of the distribution is evident. The statistical test is
de�ned for being used in the StreamKrimp algorithm in form of the so-called code
table di�erence measure.

De�nition 37 (Code table di�erence):
iven code tables CT1, CT2 converged on two subsequent sub-streams S1, S2. The
code table di�erence (CTD) is given by

CTD(CT1, CT2) :=
L(S2, CT1)− L(S2, CT2)

L(S2, CT2)

On basis of these considerations, the StreamKrimp algorithm is de�ned in the
following.

89

Chapter 5. Streaming

StreamKrimp

Based on the Algorithm 9, which detects a distribution on a stream, and the CDT
measure, StreamKrimp is shown in Algorithm 10. The algorithm subsequently
detects the item set distribution of �nite sub-streams on basis of the minimum
description length principle.

Algorithm 10 StreamKrimp algorithm
function StreamKrimp(stream S, int blockSize, int supmin, �oat maxIR,
�oat leaveOut, �oat minCTD)

i := 1
CTi := FindCodeTableOnStream(S, blockSize, supmin,maxIR)
pos := EndPos(CTi)
while pos < SizeOf(S) do

SkipBlocks(S,CTi, pos, blockSize, leaveOut)
candCT := FindCodeTableOnStream(S, pos, blockSize, supmin,maxIR)
if ComputeCTD(S,CTi, candCT) > maxCTD then

i := i+ 1
CTi := candCT
pos := endPos(CTi)

else
pos := pos+ blockSize

end if
end while
return CT

end function

The StreamKrimp algorithm (Algorithm 10) converges an initial code table (CT)
on the received stream S, using Algorithm 9. Once the initial code table is found, it
tries to skip as many stream blocks as possible, using the statistical test described
in the previous section. If this test fails, a new code table candCT is converged,
starting at the current stream position. If the code table di�erence of CT and
candCT exceeds maxCTD, a distribution change is assumed to be detected and
candCT becomes the new actual code table. In case the stream ends, the last code
table is returned. However, this point will not be reached on in�nite streams.

Siebes et al. have shown empirically in [vLS08], that the StreamKrimp algorithm
is indeed capable of detecting changes in the distributions of frequent item sets
on streams. In the following, the StreamKrimp algorithm is embedded into the
stream classi�cation algorithm used within this thesis (presented in Section 5.1)
to detect changes in the tagging behavior of a user.

90

5.3. Stream Based Classi�cation

5.3. Stream Based Classi�cation

Section 5.1 proposed a template algorithm for stream classi�cation. The Algorithm
6 attempts to train an initial classi�cation model on the �rst stream window. This
model is then used to classify examples on subsequent windows, and updated
on the ground truth labels afterwards of the examples afterwards. The template
algorithm de�ned a function UpdateModel(), which is responsible for updating
the classi�cation model. In following, this function will be used to realize three
di�erent model updating strategies, in order to complete the de�nition of stream
classi�cation approaches.
The following Section 5.3.1 presents the three strategies used to evaluate stream

classi�cation in the area of tag prediction in micro-blogging services. After that,
experiment results are presented in Section 5.3.2.

5.3.1. Stream Classi�cation Models

The template stream classi�cation Algorithm 6 describes how stream classi�ca-
tion works overall in this thesis. The algorithm de�nition is repeated here to ease
reading.

Algorithm 11 Template stream classi�cation algorithm.
function StreamClassification(stream S, int winSize)

i := 0
j := 0
h := EmptyModel()
while ¬StreamEnd(Sj) do

Notify(h(Sj))
if j = i+ winSize− 1 then

UpdateModel(h, S, i, j)
i := i+ winSize

end if
j := j + 1

end while
end function

The function UpdateModel() is meant to be realized using di�erent classi�-
cation model update strategies. The �rst strategy presented in this thesis is very
simple and should deal as the baseline in experiments. Here, on each stream win-
dow a classi�er is trained from scratch. The second, also simple, update strategy
trains only a single model on the �rst stream window and updates this one on every
subsequent window. The third update strategy is more complex and involves the
described StreamKrimp algorithm (see Section 5.2). The approach of StreamKrimp

91

Chapter 5. Streaming

is used, in order to detect portions of the underlying stream, which appear sensi-
ble for training a classi�cation model. Furthermore, StreamKrimp should detect
changes in the tagging behavior, in order to denote when a new model needs to be
trained.

Simple Stream Classi�cation

In order to asses if the StreamKrimp based stream classi�cation approach can yield
an enhancement, two simple stream classi�cation approaches are used as the base
line in this thesis:

In the �rst stream classi�cation approach, theUpdateModel() function always
returns a new model, based on the training data in the last stream window. This
approach is in the following denoted as the simple stream classi�cation approach.
It is expected, that this approach yields the worst classi�cation quality, since each
classi�cation model returned by the update strategy is only backed by very few
training examples.

The second baseline approach, denoted as the continuous stream classi�cation
approach, trains a new model on the �rst data window. Every subsequent call to
UpdateModel() updates the received model using the training data available in
the current stream window.

Updating a Naive Bayes classi�cation model is an easy task, since it only in-
volves creating new counters for potentially unseen classes. For the custom class-
representative based classi�cation approach, which has been presented in Section
4.2, this task at �rst appears a little more complex. However, this a fallacy, since
the average class representative turned out to be most accurate (see Section 4.3.3).
The average vector is simple to update, as long as the number of examples con-
tained in the average are known.

Updating the classi�cation model is expected to inhere one signi�cant problem:
The label-reduction approach (Section 3.3.3) relies on determining frequent item
sets among the label sets. Several such label sets are then replaced by a common
frequent label set. For example, the label sets M1 = {a, b, c}, M2 = {a, c} and
M3 = {a, c, d} might all be replaced by M2. In the streaming scenario, it might
occur, that on a window Si,j the label set M2 is chosen, but on a di�erent window,
one of the others. This would reduce the idea of label reduction to absurdity.

It is expected that the, in the following presented, StreamKrimp based classi�-
cation approach yields better results, for two reasons: Firstly, it attempts to detect
a number of subsequent stream windows which appear sensible for training a new
classi�cation model. Secondly, it attempts to detect when a classi�cation model is
outdated, i.e. the tagging behavior changes, and trains a new model.

92

5.3. Stream Based Classi�cation

Krimp Based Classi�cation

In Section 5.2, the StreamKrimp algorithm has been explained, which attempts
to identify changes in the probability distribution of item sets on a stream. In
the following, this approach is embedded into the template stream classi�cation
algorithm. The StreamKrimp model update strategy attempts to detect changes
in a users tagging behavior and adjust the classi�cation model accordingly.
Algorithm 12 shows the StreamKrimp based realization of theUpdateModel()

function. The purpose of this function is to update a classi�cation model, based
on the current and potentially previous stream windows. The function uses the
classi�cation model h to store additional information needed for StreamKrimp.

Algorithm 12 StreamKrimp based model update strategy.
function KrimpUpdateModel(model h, stream S, int i, int j)

if IsEmpty(h) then
h := InitModel(Si,j)
h.CT := Krimp(TagSets(Si,j))
h.start := i
h.conv := false

else if ¬h.conv then
h′ := InitModel(Sh.start,j)
h′.CT := Krimp(TagSets(Sh.start,j))
h′.start := h.start
if ComputeIR(h.CT, h′.CT) ≤ maxIR then

h′.conv := true
h′.bounds := CalculateBounds(h′.CT, tagSets(Sh′.start,j))

end if
h := h′

else if ¬BoundsHold(h.bounds, tagSets(Si,j)) then
CT ′ := Krimp(tagSets(Si,j))
if ComputeCTD(tagSets(Si,j), h.CT, CT

′) > maxCTD then
h := InitModel(Si,j)
h.CT := CT ′

h.start = i
h.conv = false

end if
end if
return h

end function

The model update strategy shown on Algorithm 12 makes use of the principles
of StreamKrimp. In order to store information of the current Krimp state, the
classi�cation model is used. The algorithm �rst checks if the model is initialized at

93

Chapter 5. Streaming

all. If this is not the, a new model is trained and a Krimp code table is generated
on the basis of the label sets in the current stream window. If a model exists, but
the corresponding code table is not yet converged, the code table is attempted
to be converged in the manner of StreamKrimp. A new classi�cation model is
trained on the examples used for the code table. In case the code table is already
converged, the statistical test of StreamKrimp is applied to determine if a change
in the probability distribution of tag sets is evident. If this test fails and the code
table di�erence between the current code table and a newly generated one exceeds
maxCTD, the new code table is kept and a new classi�cation model is trained.
Otherwise, the converged code table still re�ects the current tag set distribution
and is therefore kept, as well as the current classi�cation model.

5.3.2. Evaluation

The presented stream classi�cation approach is in following evaluated in combi-
nation with all three proposed model update strategies, as well as both classi�ers,
which yielded the best performance in Section 4.3.3: Naive Bayes and the custom
classi�cation approach on basis of class representatives. Evaluation takes place on
the example sets sampled from the Twitter web service, as described in Appendix
A. The major goal of the evaluation is to assess if the presented stream classi�ca-
tion approach is feasible to realize tag prediction in micro-blogging services or if a
batch learning approach has to be utilized for this task..
Beside the classi�cation accuracy of the stream based approaches, the following

questions are leading for the evaluation:

• A general loss of accuracy is assumed to attend stream based classi�cation,
compared to classical classi�cation environments. How accurate are the se-
lected classi�ers in a stream environment?

• It has been noted in Section 5.1, that the presented stream classi�cation
approach su�ers from bootstrap problem. How much does this e�ect in�uence
the average accuracy?

• Does the StreamKrimp algorithm detect changes in users' tagging behavior
and how do these relate to classi�cation accuracy?

The following section describes the setup for experiments in this section. Subse-
quent sections evaluate di�erent experiments to answer the questions noted above.

5.3.3. Experiment Setup

Both classi�ers, the Naive Bayes classi�er and the custom 1NN classi�cation on
FTC cluster representatives, have been tested with all three presented stream

94

5.3. Stream Based Classi�cation

classi�cation approaches: The simple stream classi�cation approach, the contin-
uous stream classi�cation approach and the StreamKrimp based model update
strategy. The setup of the experiments in this chapter is very similar to the setup
described in Section 4.3, where di�erent classi�ers have been evaluated on the basis
of the multi-label to single-label transformation approach. Therefore, only changes
to this setup are described in following.
Both of the classi�ers selected in Chapter 4, Naive Bayes and the custom-

developed average class representative based approach, do not require any pa-
rameters to be optimized. However, the stream classi�cation algorithm requires at
least the window size to be set, the StreamKrimp based variant requires even more
parameter values. Although Siebes et al. provide a recommendation for these val-
ues in [vLS08], evolutionary parameter optimization, as described in Section 4.3.2,
has been used to determine �tting values for the case of tag prediction in micro-
blogging systems. The following list gives an overview on the parameters:

blockSize For all stream classi�cation strategies, this parameter is to be opti-
mized. The target value range has been limited to [1, 1000], in order to
not exceed values sensible for the targeted web service environment and
to ease the optimization process. In [vLS08], this setting is proposed
to be set to the number of items that can occur in the stream. This is
not possible in the underlying case, since tags that might occur in the
future are not known beforehand, in practice.

supmin The minimum support for frequent item set mining is the only param-
eter that has not been optimized. Since the label reduction approach
(Section 3.3.3) relies on all item sets to be mined, this setting has been
kept. This also satis�es the need of the Krimp algorithm to have all
singleton item sets available for generating a coding set, as described
in De�nition 32 in Section 5.2.1.

leaveOut A leave out value of 0.01 is suggested in [vLS08]. However, this value
makes sense only if a large number of stream blocks are involved in the
converging process of a StreamKrimp code table. Since the number of
involved blocks is expected to be small, it has been chosen to optimize
this parameter as well. The value range here is [0, 0.5].

maxIR The proposed value for the maximum improvement rate is 0.02. Because
it is unknown how StreamKrimp will behave with varying items on
stream blocks, this parameter has been included in the optimization
process with a value range of [0, 1].

minCTD The minimum code table di�erence de�nes how much better a new code
table must compress a stream block to induce a change of distribution.

95

Chapter 5. Streaming

For the same reasons as for maxIR, this parameter has been included
in the optimization process.

The resulting set of six experiment setups � all three stream processing methods
with each classi�er � have been executed for all �ve sampled user data sets inde-
pendently (Appendix A). Since the stream data model consists of an ordered set of
examples, no cross validation (see Section 4.3.1) has been applied. In order to as-
sess classi�cation accuracy, the multi-label data set has �rst been prepared by the
label reduction approach and then transformed using the power set transforma-
tion, to generate ground truth labels. During the stream classi�cation, this process
is also applied to the original label sets, on the basis of the current stream window.
A large fraction of partly correct classi�cations is expected, due to the di�erence
between applying label reduction to the full example set and only on a stream win-
dow. Therefore, the α-accuracy has been selected as the major quality criterion.
Details on this measure, which can cope with partly correct classi�cations, can be
found in Section 4.3.1.

Classi�cation Quality

To assess the α-accuracy of the Naive Bayes classi�er and the custom-developed
1NN approach on the basis of class representatives, for both of them experiments
have been run in the RapidMiner framework, embedded in each of the three pre-
sented stream classi�cation models.

Repr. simple

Repr. KRIMP

Repr. cont.

Bayes simple

Bayes KRIMP

Bayes cont.

Reference User 1 User 2 User 3 User 4

Alpha

0

0.25

0.5

0.75

1

Figure 5.2.: Overview on tested stream classi�cation methods. Simple denotes
the simple stream processing approach, while KRIMP refers to the method
involving StreamKrimp. The cluster representative 1NN classi�cation ap-
proach is referred to a FTC.

Figure 5.2 indicates that all three stream classi�cation approaches fail to yield an
acceptable α-accuracy. None of the presented approaches was capable of producing
accuracy signi�cantly better that 0.5. Only for the data set User 4, which only
contains 4 labels and very few examples, better values could be achieved. For those

96

5.3. Stream Based Classi�cation

data sets with many labels, the classi�ers even score only about 0.25. Although this
is a disappointing result, this leads to the conclusion that none of the presented
stream classi�cation approaches is capable to solve the problem of tag prediction
in micro-blogging services to a satisfying degree. The best result was generally
achieved by the Naive Bayes classi�er in combination with the continuous stream
approach.

Bootstrap E�ect

Section 5.1 noted, that the developed stream classi�cation approaches su�er from
the so-called bootstrap e�ect. Since no classi�cation model is available on the �rst
stream window, the classi�cation accuracy (and α-accuracy) is always 0. Table 5.1
compares the measured α accuracy values with and without bootstrap e�ect for
some of the experiments, i.e. for calculating the average α-accuracy of the no boot
values, the �rst stream window has been left out.

Reference User 1 User 2 User 3 User 4 Avg

Representative based classi�cation

KRIMP
full 0.26 0.43 0.31 0.16 0.43 0.32± 0.10
no boot 0.29 0.44 0.32 0.17 0.43 0.33± 0.10

cont.
full 0.12 0.30 0.38 0.17 0.36 0.26± 0.10
no boot 0.18 0.30 0.39 0.20 0.36 0.29± 0.08

Naive Bayes

KRIMP
full 0.22 0.19 0.30 0.21 0.36 0.25± 0.06
no boot 0.26 0.19 0.33 0.23 0.36 0.28± 0.06

simple
full 0.21 0.53 0.31 0.19 0.07 0.26± 0.15
no boot 0.22 0.53 0.35 0.22 0.07 0.28± 0.15

Table 5.1.: Stream classi�cation bootstrap e�ect.

It can be noted, that the bootstrap e�ect is indeed visible, although it is not re-
ally strong. Overall, the StreamKrimp based stream classi�cation approach yields
the best results in combination with the class representative based approach devel-
oped in Section 4.2. Still, with an α-accuracy of 0.33± 0.10, this is not acceptable
for a practical implementation of a tag recommendation service.

Krimp Based Stream Model

It is interesting to see if the Krimp based stream classi�cation model can in fact
detect changes on a stream and if this e�ect is visible within the classi�cation
quality of the embedded classi�er. To assess this, the classi�cation log of subsequent
stream windows is presented for two user data sets in Figure 5.3 and Figure 5.4.

97

Chapter 5. Streaming

The α-accuracy is shown on subsequent stream windows for the custom average
class representative 1NN classi�er, in combination with the Krimp based stream
classi�cation model. An addition, a line represents the convergence state of the
current Krimp code table. A low value indicates that the current code table did
not converge, yet. A high point indicates a converged code table.

KRIMP
User 3

α

0

0.25

0.5

0.75

1

Figure 5.3.: Krimp stream classi�cation log for User 3.

KRIMP

Reference

α

0

0.25

0.5

0.75

1

Figure 5.4.: Krimp stream classi�cation log for Reference.

It can be noted, that the Krimp based change detection has no visual e�ect.
Code tables generally take one stream window for converging and are abandoned
again on the subsequent window, while the classi�cation quality does not appear to
be related to this frequency. Since the StreamKrimp parameters have been selected
using a parameter optimization process, it can be assumed that the shown setting
is optimal for the underlying case. Therefore, either the chosen stream model is
not feasible to work with StreamKrimp, or the selected classi�ers are not prone
for changes in the probability distribution of tag sets.

98

Chapter 6

Conclusion

The following chapter concludes this thesis and gives an outlook on potential fu-
ture research in the area of tag prediction in micro-blogging systems. The following
Section 6.1 summarizes the results yielded throughout this thesis. After that Sec-
tion 6.2 summarizes some detected problems and gives an impression on potential
future research approaches. Finally, Section 6.3 completes this thesis with a bottom
line.

6.1. Summary

The task of tag prediction in micro-blogging systems is a problem from the area of
multi-label classi�cation. The preceding thesis selected a data set transformation
approach to tackle this multi-label classi�cation problem using classi�ers from
the standard repertoire of machine learning. To enhance classi�cation quality on
basis of the selected transformation approach, a technique has been developed,
which attempts to reduce the number of generated labels on the basis of frequent
term-based clustering. In addition to that, a custom classi�cation approach was
presented, which relies on a class representative based condensation of the training
data set, to which kNN is applied. Finally, it was attempted to embed the two most
promising classi�cation approaches into a data stream model, while three di�erent
stream classi�cation approaches were evaluated.
In Chapter 3, the problem of tag prediction in micro-blogging systems has been

identi�ed as a multi-label classi�cation problem. Several common approaches to
tackle this problem using a transformation into a single-label problem, originally
summarized in [TK07], have been presented and evaluated. The evaluation yielded,
that a method, denoted as the power set transformation method in this thesis, ap-
peared most feasible in the underlying case. This technique transforms the multi-
label data set into an equivalent single-label variant by replacing each distinct
label set with a unique, single label. Experiments with the selected standard clas-
si�ers, kNN, Naive Bayes and SVM, underlined the stated assumption, that this
transformation technique would yield a large number of labels for actively tagging
users, which in�uences classi�cation accuracy negatively. In order to mitigate this
problematic e�ect, a technique to reduce the number of labels produced by the
power set transformation method has been developed.

99

Chapter 6. Conclusion

The developed label-reduction approach is based on the technique of frequent
term-based clustering, presented by Beil et al. in [BEX02]. This clustering tech-
nique attempts to cluster text documents on the basis of frequent term-sets, i.e.
item sets, to ship around problems with the high dimensionality of the term vec-
tor model (see Section 3.1.1). In addition, frequent term-based clustering yields
a description for each cluster, in form of a frequent term-set that is common to
the documents in the cluster. The developed label reduction approach applied this
clustering technique to the tag sets of the original multi-label data sets of micro-
blogging entries. The tag sets contained in a certain cluster were then replaced
by the cluster description yielded by FTC, i.e. a frequent term-set among the tag
sets. Empirical evaluation showed, that FTC is capable of generating clusterings of
reasonable quality. While Beil et al. suggested two di�erent FTC algorithms, only
the �at clustering variant has been evaluated for label reduction within this thesis.
Furthermore, [BEX02] proposed a second overlap measure in order to generate
sensible clusterings, which has not been considered in scope of this thesis.

The suitability of the developed label-reduction approach, for mitigating the
classi�cation accuracy problem involved with a large number of labels, has been
shown empirically in Chapter 4. Experiments have been presented using the three
standard classi�ers, each on basis of data sets yielded by the pure power set trans-
formation method compared to using the label-reduction technique. As expected,
the classi�cation accuracy could be increased signi�cantly.

In addition to the standard classi�ers, a custom classi�cation approach has been
developed and evaluated, which is inspired by [HK00]. This approach uses the well-
known kNN method on a condensed training data set. Condensation is achieved by
replacing all examples of a certain class by a smaller, representative set of vectors.
Di�erent methods for generating such a representative have been evaluated: The
average vector, the median vector and the well-scattered points technique by Guha
et al. ([GRS98]). Empirical evaluation showed that this classi�cation approach,
in combination with the average vector representative generation, is capable of
outperforming even the best standard classi�er, Naive Bayes, in many cases.

Finally, Chapter 5 presented a stream classi�cation model, to develop an anytime
algorithm for being used in a tag-recommendation web service, and three di�erent
model update strategies for it: Two simple approaches, where the �rst trains a
new model on each stream window and the second updates a once trained model
constantly on newly arriving data. In addition to that, a more complex method has
been developed on basis of StreamKrimp ([vLS08]), which attempts to detect the
probability distribution of tags in a micro-blogging stream and, more importantly,
to detect changes in this distribution. The goal was to train models more e�ectively
and to adjust them to changes in a users tagging behavior. Empirical evaluation
rated none of the presented approaches as feasible for being used in practice, since
none of them yielded an average α-accuracy above 0.33. While the most accurate
approach was the StreamKrimp based technique, it could not be assessed that the

100

6.2. Future Research

changes detected in the probability distribution of tags relate to the classi�cation
quality on corresponding stream windows.

6.2. Future Research

Two di�erent areas touched by this thesis provide special potential for future re-
search: The developed label reduction approach and the stream prediction ap-
proach. Directions for future research are discussed in further detail in following.

6.2.1. Label Reduction Approach

The developed label reduction algorithm relies on frequent term-based clustering,
presented by Beil et al. in [BEX02]. In the scope of this thesis, only the �at FTC
version has been evaluated. Wurst and Kaspari describe an approach for multi-
objective frequent term set clustering in [KW07]. They study clusterings based
on frequent term sets, which are optimized in a multi-objective way, resulting
in hierarchical clusterings that can e.g. used as navigation structures in tagging
systems.
An interesting topic for future research would be to develop a way of utilizing

these hierarchical clustering techniques in the scope of the label reduction tech-
nique. A crucial point with both approaches would be the selection of feasible
cluster nodes from a hierarchical clustering, since such a clustering is commonly
overlapping. In addition, the approach by Wurst and Kaspari does not yield a
single clustering, but a set of Pareto optimal clusterings, from which a feasible one
must be selected �rst.

6.2.2. Stream Classi�cation

As presented in Section 5.3.3, the quality of the developed stream classi�cation
approaches, based on Naive Bayes and class representative based kNN classi�ca-
tion, is not satisfactory. Most interestingly, the StreamKrimp based approach did
not show any obvious relation between detected tag distribution changes, trained
classi�cation models on this basis and classi�cation quality. One attempt to raise
classi�cation accuracy could be, to implement further enhancements to Krimp,
presented by Siebes et al. in [SVvL06].
Section 5.1 noted that the presented stream classi�cation approaches su�er all

from the so-called bootstrap problem, since none of them has a classi�cation model
ready on the �rst window. One approach to this problem could be to extract poten-
tial tags from not tagged micro-blogging entries in an early stage of the processing.
For example, frequent term sets of the full term vectors could be used. However,
this would not fully solve the bootstrap issue, since for the �rst status update, no
information from the user is available at all. Beside simple random selection of a

101

Chapter 6. Conclusion

word from this post, one could involve knowledge on the tagging behavior of related
users. This methodology could also help enhancing the classi�cation accuracy in
the stream environment, if related users are chosen with similar tag behavior as
the user in question.

6.3. Bottom Line

The developed batch classi�cation approach for the purpose of tag-prediction in
micro-blogging environments produces fully satisfying results. It has been shown,
that the selected multi-label transformation technique is feasible in the underlying
case and that classi�cation accuracy can be signi�cantly increased by applying
the developed label-reduction approach on basis of FTC. The developed classi-
�er, which works in a kNN manner on a condensed training set, turned out to
even outperform the best evaluated standard classi�cation approach, Naive Bayes.
Both classi�cation approaches are similarly modest in terms of computation time
and memory utilization, which quali�es them for being used in the web service
environment.
In contrast to this, the developed stream classi�cation approaches did not yield

the expected classi�cation accuracy with neither of the analyzed classi�cation ap-
proaches. This leaves the problem of tag-prediction on a stream basis still open for
future research.

102

Appendix A

The Data Set

The data sets used for experiments throughout this thesis has been extracted from
the Twitter web service. In following the process of data extraction is described
in Section A.1. After that, some basic statistical analysis is performed in Section
A.2.

A.1. Data Set Extraction

Twitter provides di�erent ways for accessing its data, mainly micro-blogging entries
and certain portions of user data. Beside the HTML based web interface for end-
users, a web service application programming interface (API) is provided. This
API is mainly meant for client applications, providers of services based on Twitter
and research purposes. The example data used for experiments in this thesis has
been extracted through this web service API, which is described in further detail
in following.

A.1.1. Twitter Web Service API

The Twitter web service API follows the concept of representational state trans-
fer (REST), similar to the architectural concept described by Fielding in [Fie00].
REST describes the architectural concept for distributed hypermedia, i.e. a web
service architecture which utilizes the syntactical and semantical concepts of the
hyper text transfer protocol (HTTP).
In the sense of REST, the Twitter web service API is mainly de�ned through

resource identi�ers in form of HTTP uniform resource locators (URLs). A web
service consumed sends an HTTP request to such an URL in order to retrieve or
manipulate information.
URLs are well-known from web browsing, an example for a Twitter web service

URL is shown in Figure A.1. Above the URL, the syntax is explained: An URL
consists of a protocol identi�er (http in this case), a host speci�er which can
either be a network address or a host name � as in this case � and optionally a
path speci�er. Below the URL, the Twitter web service semantics is explained.
The host name denotes the web service end point. The �rst path element indicates
which version of the web service API the client wants to utilize for communication.

103

Appendix A. The Data Set

After that, the object type to be accessed is noted. In the presented case, this is a
collection of status messages in form of a user timeline, i.e. micro-blogging entries
by a speci�c user in reverse chronological order. The �nal path element speci�es
the user ID for which entries should be fetched and the desired response format,
XML1 in the presented case.

http://api.twitter.com/1/statuses/user_timeline/12345.xml

protocol host path

end point ver. resource type ID format

Figure A.1.: Structure of a Twitter web service URL

As de�ned by the REST architecture, the shown URL does not identify a de-
terministic set of values, but refers to a concept, describing the data to expect.
In the presented case, this is a set of status messages by the given user in reverse
chronological order. The actually returned values will most likely vary, when being
requested at two di�erent points in time. Without any further options de�ned by
a client, a HTTP GET request to the presented URL will return the 20 most recent
micro-blogging entries by the desired user. Using options in form of HTTP GET

parameters, the client can in�uence the returned data further. For example, by
specifying the parameter count, the client speci�es the number of statuses to be
returned. It is important to note, that, conforming to the REST architecture, a
request to the URL may also return an empty set. This, for example, happens if
the given user did not produce any entries, yet. Furthermore, an error response
might be returned, for example in case the parameters provided by the client where
faulty or the service produced an error.
The Twitter web service provides access to a variety of other sets of resources

and also allows the manipulation of such sets, given valid authentication and the
authorization. This includes the creation of new entries, editing of user data and
more. An extensive documentation of the provided methods can be found in the
Twitter API documentation2.

A.1.2. Data Extraction and Sampling

To assess the quali�cation of machine learning techniques developed within this
this, example data has been extracted from Twitter using the web service API
described in Section A.1.1. It is obviously not possible to run experiments on

1http://www.w3.org/XML/ (2010-05-17)
2http://apiwiki.twitter.com/Twitter-API-Documentation (2010-05-17)

104

A.1. Data Set Extraction

the complete Twitter data base (see Section 2.2.3), due to time, memory and
processing power constraints. Furthermore, a user-centric approach is desired in
this thesis. Therefore, a heuristic sampling mechanism has been applied during
data extraction, in order to retrieve representative user data sets.

Population De�nition

The desired data set has been extracted from the database of Twitter status mes-
sages, taking the related user into account (see Section 2.1). In order to retrieve
the example data, users have been selected pseudo-randomly from Twitter and all
possible micro-blogging entries written by them have been fetched. To ensure that
the extracted data set provides micro-blogging entries written by real world users,
only users ful�lling the following constraints have been taken into account:

1. The user must have written at least 2000 entries.

2. A minimum of 100 other users must follow the user in question.

3. The user must follow at least 50 other users.

Restriction 1 ensures, that the user provides enough example data to run ex-
periments on. With criterion 2, it is attempted to exclude spam accounts from the
population. Such users follow as much other people as possible, to gain their at-
tention for advertisement purposes. A human can detect such behavior easily and
would not follow the spamming user. Therefore, a reasonable amount of followers
is a good indicator against spam accounts. Finally, a user must follow at least 50
other users in order to qualify for the population (condition 3). This requirement
is meant to exclude bot accounts. The status messages of such accounts are gener-
ated through a computer program. Depending on their service, such bots can have
quite some followers, but do usually not follow many users. An example for such
a bot is GetForecast3.
From all users ful�lling the de�ned constraints, it has been tried to extract a

representative sample.

Sampling

Since it is infeasible to extract the whole population from the Twitter database, a
heuristic has been de�ned for extracting a su�ciently random sample.
To select random users, the overall public timeline of Twitter has been used,

which presents the most recent micro-blogging entries over all users at a given
point of time. Due to the huge number of users on Twitter, it is expected that
fetching this collection of statuses at random point in time inheres enough entropy
to be reasonably random.

3http://twitter.com/getforecast (2010-05-17)

105

Appendix A. The Data Set

On this background, the algorithm shown in Figure 13 has been developed to
sample data of 50 distinct users from the Twitter database. Each user found in the
public timeline has been checked for the presented constraints. If the user appeared
feasible, his / her user data has been stored in a local MySQL4 database in order
to extract micro-blogging entries for this users afterwards.

Algorithm 13 Algorithm to sample users from Twitter
function SampleData

sample := ∅
while |sample| < 50 do

latest := fetchLatestStatuses()
users := extractUsers() \ sample
for user ∈ users do

if conditionsFulfilled(user) then
sample := sample ∪ {user}

end if
end for

end while
return sample

end function

The generated population consists of more than 140,000 micro-blogging entries.
A simple SQL query for micro-blogging entries that contain the # char � which in-
dicates a tag � revealed, that approximately 10,000 micro-blogging entries contain
tags.
From the 50 fetched user, four have been randomly selected to deal as example

data for experiments. These are denoted with User x (x ∈ {1, . . . , 4}) through
experiment evaluation. In addition, the Twitter data of the thesis author has been
chosen as a reference data set, because of the a priori knowledge about the active
tagging.

A.2. Data Set Statistics

To gain an insight into the sampled data set, the collected data has been analyzed
from a statistical point of view. Leading questions are:

• How do users tag their statuses?

• How are terms and tags distributed within user sample?

4http://mysql.com/ (2010-07-22)

106

A.2. Data Set Statistics

• Of what size are the dictionaries of the users?

• How sparse are word vectors created from micro-blogging entries?

• Does the tagging behavior of users change over time?

The presented statistics have almost exclusively been calculated in the Rapid-
Miner framework. However, some statistics were extracted directly from the
database using SQL statements.

A.2.1. Tagging Behavior

The fraction of tagged statuses (see Section A.1) indicates, that tagging is overall
not very common among Twitter users. To verify this impression, the fraction of
labeled examples was calculated on a per-user basis over the selected sample.

Reference User 1 User 2 User 3 User 4 Avg.

entries 1047 3155 2654 3195 3199 2549.8± 931.84
tagged 805 466 258 1236 20 557± 476.60
Fraction 0.77 0.15 0.1 0.39 0.006 0.28± 0.31

Table A.1.: Tagging behavior statistics. Number of overall entries (# entries)
and tagged statuses.

The results in Table A.1 do not con�rm the impression that in general only a
fraction of 7% of the statuses are tagged. Instead, users show a brought diversity
in tagging behavior. Some exist with a much higher as well as such with a much
lower rate. While User 3 tagged 39% of his / her micro-blogging entries, User 4
labeled only 0.6%. As expected, the Reference sample turns to tag very actively,
with a fraction of 0.77 tagged statuses. The average and standard deviation values
underline the impression that users tagging behavior di�ers widely.
For the desired tag prediction system, the data of users who participate more

actively in tagging were expected to yield classi�cation results. Such users o�er a
larger amount of training data, which, on the one hand, promises better classi�-
cation quality than few training data. On the other hand, this could also lead to
a tight separation boundary between classes and therefore to worse classi�cation
quality. Experiments presented in Section 4.3.3 con�rmed both ideas: User sam-
ples with many training examples do yield better classi�cation performance, but
a large number of tags mitigates this e�ect.

107

Appendix A. The Data Set

A.2.2. Dictionary and Term Vector Size

To get an idea of the distribution of words used in a users timeline, term vectors
have been generated from each user samples, as de�ned in Section 3.1.1. The overall
occurrence of each term has been measured and the Euclidean length of the term
vectors has been analyzed as an indicator for their sparseness.

The number of occurrences of a term in an example (status) has been used as
the term vector values. Table A.2 presents and compares the dictionaries sizes on
a per-user basis in the �rst data row.

The sample User 4 has a very brought dictionary, while the Reference user
provides smallest number of words. This could be the result of users writing in
di�erently sized domains. The reference user writes statuses mostly about open
source development, speci�cally the PHP programming language. Manual inspec-
tion of the examples in User 4 yielded that the domain if this user are job o�ers
in various �elds, what con�rms the thesis.

The average number of words in a users dictionary is low, compared to common
numbers for such cases, i.e. 10,000 noted by Beil, et al. in [BEX02].

Reference User 1 User 2 User 3 User 4 Avg.

terms 2449 5730 3389 4332 6128 4415.60± 1532.50
Max. length 8.145 2.646 13.379 23.0 6.325 10.70± 7.89

Table A.2.: Dictionary size and term vector length statistics

In addition, the maximum Euclidean length of the generated term vectors for
each user is presented in Table A.2. The typical assumption that term vectors
are sparse holds, even for User 3: Given an Euclidean length of 23, a maximum
of 529 unique words could have occurred in the underlying status. Compared to
4332 words in the dictionary of this user, this can be considered sparse. Manual
inspection of the a�ected example has turned out, that it actually consisted of 23
times the same word. The next lower vector length for this user is 16.03, which is
still high compared to the other users. But again, this status consisted of 15 times
the same word and 1 di�erent one. The �rst entry with roughly sensible content
has a length of 8.94, which �ts into the average and con�rms the assumption.

Considering the limited size of 140 characters per status, 4900 is an upper bound
for the word vector length. Such an example would consist of 70 di�erent characters
divided by spaces. Given the dictionary sizes, it can be concluded that micro-
blogging entries must therefore always lead to sparse term vectors.

108

A.2. Data Set Statistics

A.2.3. Term Distribution

Figure A.2 shows the term distribution for User 3. Terms are sorted by their
occurrence frequency on the domain axis. The absolute overall term occurrence is
noted on the value axis. The presented distribution is prototypical for all samples
and optically appears to be following Zipf's law, as one would naturally expect for
text content.

Figure A.2.: Term distribution statistics

A manual inspection of the terms most frequently used by the analyzed user
samples revealed, that Twitter has a small custom slang. For example, the most
frequent term for User 3 is rt, which is the abbreviation for Re-Tweet, i.e. the
quotation of another users status. This term is also frequent for 2 other user
samples.
Parts of URLs, such as http and com, occur frequently among four of the �ve

analyzed samples. Due to the size limitation of statuses, it is common practice in
micro-blogging services to cut down the character length of URLs as far as possible.
This typically works by using URL shortening services. Such services create a tiny
but cryptic URL for which the web server just responds with the HTTP redirect
response 301 Moved Permanently, including the desired destination. An exam-
ple is http://tinyurl.com/ykgf3kv which redirects to http://schlitt.info/

opensource/blog/0716_convert_from_to_opendocument.html. Using the short
URL in this case saves 48 characters. The shown TinyURL5 service is frequently
used by two analyzed users, indicated by the term occurance frequency of the term
tinyurl.
It is interesting to note, that typical internet slang acronyms like lol do not

occur as frequently as one would intuitively expect. For User 4 the term resides on
frequency rank 9 with 283 occurrences, but none of the other users samples has
this term among top 10. Other internet slang terms are not present in the top 10
of frequent terms for the samples.

5http://tinyurl.com (2010-05-17)

109

Appendix A. The Data Set

A.2.4. Tag Distribution

To gain an insight into the distribution of tags in a user sample, term vectors have
been generated from the tags only. Table A.3 presents the following data on a per
user basis:

refers to the number of unique tags

Max occ. denotes the maximum occurrence of a single tag

Max length speci�es the maximum length of a tag term vector

occ. 1 refers to the number of tags that occur only once.

Reference User 1 User 2 User 3 User 4 Avg.

357 76 56 489 4 196.40± 213.68
Max occ. 93 110 97 144 8 88.75± 57.86
Max length 2.24 2.65 8.00 23.00 1.00 7.38± 9.14
occ. 1 208 37 29 321 2 119.40± 138.96

Table A.3.: Tag occurrence statistics

The number of unique tags ful�lls the intuitive impression based on the users
tagging behavior: Users who participate more actively in tagging use more tags
than those who do not tag frequently. Of the used tags, a fraction of about 50%
occurs only once in the sample. This con�rms the motivation for the tag-prediction
system developed in this thesis. The distribution of tags in the sample of User 1 is
visualized in Figure A.3. Again, this visually appears to be a distribution roughly
following Zipf's law. The tag distributions for other users look similar.

Figure A.3.: Tag distribution statistic

110

Appendix B

Experiments

In following, selected experiment setups and results for the experiments performed
throughout this thesis are presented.
Experiment setups are shown as developed in the RapidMiner framework. Rapid-

Miner uses a tree structure to combine so-called operators. An operator can en-
capsulate arbitrary actions on its given input data, like manipulation, creation
of new data or calling subordinate operators with potentially manipulated input
data. Operators are executed by an in order traversal of the operator tree.
Data in RapidMiner is handled in form input output (IO) objects, which can

contain arbitrary data structures, depending on their type. Examples for IO objects
are example sets � of di�erent types � or classi�cation models. These IO objects
are maintained in a container, which is submitted to each operator, subsequently.
Operators may consume IO objects from the container or add new ones. This way,
operators can retrieve IO objects generated by their predecessors, if it has not been
consumed by an intermediate operator.

B.1. Custom Operators

Whenever possible, the standard operators shipped with the RapidMiner frame-
work have been used to realize experiments throughout this thesis. However, in
some cases no suitable operators were available, so that custom ones have been
implemented. These are

• an operator to realize frequent term-based clustering as described in [BEX02]
(see Section 3.3.3)

• an operator that realizes the hierarchical version of the FTC algorithm, al-
though not used within this thesis

• a custom Naive Bayes operator which is can be updated with new, unseen
classes during stream learning

• an operator for calculating inter and intra cluster distances (see Section 3.3.4)

• several operators around the Krimp and StreamKrimp algorithms, used for
stream classi�cation experiments (see Section 5.2)

111

Appendix B. Experiments

• an operator to calculate the Rand index of two clusterings (see Section 3.3.4)

• an operator realizing the custom classi�cation technique on basis of class
representatives (Section 4.2).

These operators are currently only available through an internal subversion
repository of the Arti�cial Intelligence Group of TU Dortmund, but might be
made available as open source software after this thesis has been published.

112

B.2. Basic Experiment Setup

B.2. Basic Experiment Setup

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

Figure B.1.: Basic experiment
setup.

Figure B.1 shows the RapidMiner oper-
ator tree used as the basis in all subse-
quent experiments. It loads a desired
user data sample from the database
and performs basic pre-processing op-
erations, in order to produce feasible
data structures for the desired exper-
iments: One example set consists of the
term vectors of micro-blogging entries
and a second example set consists of
a tag vector for every example. This
representation has been chosen, since
RapidMiner does not natively support
the multi-label environment.
The presented operator tree consists

of three basic steps, composed in form
of operator sub-trees:

1. Loading of the micro-blogging en-
tries for a speci�c user (1.2).

2. Extraction of tag vectors from
micro-blogging entries in (1.8).

3. Extraction of full term vectors in
(1.16).

Loading of the micro-blogging entries
involves the actual load operation from
a relational database (1.3) and conver-
sion of the nominal �eld containing the
micro-blogging entries into a string text
�eld (1.4). After that, two copies (1.5)
of this example set are put into ded-
icated memory storages (1.6, 1.7) for
later retrieval in each of the following
operator trees.
Pre-processing for the tag example

set (1.8) and full term vectors (1.16) is pretty similar. First, the corresponding
version of the micro-blogging entry example set are fetched from the memory stor-
age (1.9 and 1.17). After that, an operator consumes this example set and generates
a new version, consisting of the desired term vectors (1.10 and 1.18). For simplicity

113

Appendix B. Experiments

reasons, this sub-tree is collapsed in 1.18, since it basically duplicates 1.10. The
term vector generation involves string tokenizing (1.11), splitting the text into to-
kens at each non-alphanumeric character for the full term vectors and extracting
every sequence of alphanumeric characters that is preceded by a # character for
the tag vectors. After that, the resulting terms are stemmed and converted to
lower-case, as described in Section 3.1.2.
On the resulting term vector example set, each numerical �eld is the converted

to a binominal �elds, in order to weight term vectors by binary occurrence (1.14
and 1.19). Finally, the example sets are stored in memory again for later usage in
experiments in the operators 1.15 and 1.20.
Storing of IO objects in a dedicated memory storage removes them from the

global IO object container. This cleans up the overall process data and avoids
con�icts of that form, that an operator accidentally chooses the wrong IO item, if
multiple of the same type are present. For example if two example sets are present.
This basic pre-processing is performed for every subsequently presented experi-

ment and therefore left out in the following.

114

B.3. Multi-Label Experiments

B.3. Multi-Label Experiments

The �rst experiment series in this thesis consisted of the evaluation of the three
selected standard classi�ers � kNN, Naive Bayes and SVM (see Section 4.1) � and
the custom, class representative based, classi�cation approach (Section 4.2) on
basis of the power-set transformation method. This approach to tackle the multi-
label classi�cation problem relies on an example set transformation, where each
distinct label set is replaced by a new, unique, single label. For example, the label
set {a, b, c} is replaced by a ∧ b ∧ c.
The second experiment series is rather similar, but involves the label reduction

approach, developed in Section 3.3.3. This approach performs frequent term-based
clustering on the multi-label sets and replaces a number of them with a common,
frequent subset. This reduces the overall number of labels generated by the power
set method.

B.3.1. Experiment Setup

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Figure B.2.: Power set classi�ca-
tion experiment setup.

The setup of the kNN evaluation exper-
iment is prototypically shown in Figure
B.2. Before the shown operators, the
basic experiment setup shown in Fig-
ure B.1 is placed. The �rst experiment
operator (2.1) generates an example set
with a single label attribute, containing
the power set labels. The example set
join operator (2.2) merges the full term
vector example set with the power-set
labels.
The next operator sub-tree (2.3)

performs evolutionary parameter opti-
mization as described in Section 4.3.2.
For each generated individual, i.e. pa-
rameter value set, the trailing operator
tree is executed to evaluate the �tness.
In the shown case, the parameter k for
the kNN classi�er is optimized. During
evaluation of the �tness of a parameter
set, strati�ed cross validation (Section

4.3.1) is used to asses the generalization performance of the operator (2.4). The
cross validation process trains a kNN classi�cation model (SVM and Naive Bayes
analogous) on the training fraction of the data set in a �rst step (2.5). The sec-
ond step consists of applying the trained model (2.7) and the quality evaluation

115

Appendix B. Experiments

using classi�cation accuracy (2.8) and α-evaluation (2.9). Information about these
quality measures can be found in Section 4.3.1.
After the evolutionary parameter optimization process is �nished, the found

optimal parameter value set is written to disc (2.10), as well as the yielded perfor-
mance (2.11).

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

Figure B.3.: Label reduced classi-
�cation experiment setup.

In order to run the same experiment,
but with label-reduction involved, only
the label-generation operators (2.1 and
2.2) are removed and replaced by the
operator sub-tree shown in Figure B.3.
The operators 3.3 and 3.4 mine all
item sets from the tag sets. After that,
frequent term-based clustering is ap-
plied to these (3.6). Finally, operator
3.8 maps the reduced labels to the full
term vectors.

B.3.2. Experiment Results

Figure B.4 shows the classi�cation ac-
curacy yielded by the di�erent classi-
�cation approaches in the experiment

presented in the last Section B.3.1. Table B.1 compares results for the power set
label experiments and label reduced experiments, in terms of accuracy and α-
accuracy.

Naive Bayes

kNN

SVM

Repr. avg.

Repr. med.

Repr. WSP

Reference User 1 User 2 User 3 User 4

Accuracy

0

0.25

0.5

0.75

1

Figure B.4.: Classi�cation accuracy on power-set labels

116

B.3. Multi-Label Experiments
R
ef
er
en
ce

U
se
r
1

U
se
r
2

U
se
r
3

U
se
r
4

A
vg
.

P
ow

er
se
t
la
b
el
s

N
ai
ve

B
ay
es

(a
cc
.)

0.
35

0.
75

0.
66

0.
36

0.
50

0.
52
±

0.
16

(α
-a
cc
.)

0.
38

0.
75

0.
68

0.
38

0.
55

0.
55
±

0.
15

kN
N

(a
cc
.)

0.
19

0.
56

0.
36

0.
23

0.
50

0.
37
±

0.
14

(α
-a
cc
.)

0.
22

0.
56

0.
36

0.
24

0.
55

0.
39
±

0.
15

SV
M

(a
cc
.)

0.
17

0.
31

0.
42

0.
19

0.
50

0.
32
±

0.
13

(α
-a
cc
.)

0.
18

0.
31

0.
42

0.
20

0.
55

0.
33
±

0.
14

R
ep
r.
av
g.

(a
cc
.)

0.
40

0.
86

0.
65

0.
40

0.
60

0.
58
±

0.
17

(α
-a
cc
.)

0.
46

0.
87

0.
71

0.
43

0.
65

0.
62
±

0.
16

R
ep
r.
m
ed
.

(a
cc
.)

0.
22

0.
81

0.
13

0.
16

0.
25

0.
31
±

0.
25

(α
-a
cc
.)

0.
29

0.
81

0.
18

0.
21

0.
28

0.
35
±

0.
23

R
ep
r.
W
SP

(a
cc
.)

0.
25

0.
82

0.
14

0.
17

0.
30

0.
33
±

0.
25

(α
-a
cc
.)

0.
30

0.
82

0.
19

0.
21

0.
30

0.
36
±

0.
23

R
ed
uc
ed

la
b
el
s

N
ai
ve

B
ay
es

(a
cc
.)

0.
61

0.
83

0.
79

0.
55

0.
55

0.
67
±

0.
12

(α
-a
cc
.)

0.
61

0.
83

0.
79

0.
55

0.
55

0.
67
±

0.
12

kN
N

(a
cc
.)

0.
34

0.
55

0.
38

0.
23

0.
60

0.
42
±

0.
14

(α
-a
cc
.)

0.
34

0.
55

0.
38

0.
23

0.
60

0.
42
±

0.
14

SV
M

(a
cc
.)

0.
23

0.
31

0.
44

0.
12

0.
60

0.
34
±

0.
17

(α
-a
cc
.)

0.
23

0.
31

0.
44

0.
12

0.
60

0.
34
±

0.
17

R
ep
r.
av
g.

(a
cc
.)

0.
61

0.
87

0.
76

0.
58

0.
75

0.
71
±

0.
11

(α
-a
cc
.)

0.
61

0.
87

0.
76

0.
58

0.
75

0.
71
±

0.
11

R
ep
r.
m
ed
.

(a
cc
.)

0.
31

0.
82

0.
56

0.
26

0.
55

0.
50
±

0.
20

(α
-a
cc
.)

0.
31

0.
82

0.
56

0.
26

0.
55

0.
50
±

0.
20

R
ep
r.
W
SP

(a
cc
.)

0.
66

0.
88

0.
78

0.
59

0.
87

0.
76
±

0.
11

(α
-a
cc
.)

0.
66

0.
88

0.
78

0.
59

0.
87

0.
76
±

0.
11

T
ab
le
B
.1
.:
A
cc
u
ra
cy

an
d
α
-a
cc
u
ra
cy

on
p
ow

er
se
t
an
d
re
d
u
ce
d
la
b
el
s

117

Appendix B. Experiments

B.4. Stream Classi�cation Experiments

In order to assess stream classi�cation capabilities, a similar experiment setup as
the one shown in the previous Section B.3 has been used. The following sections
present an exemplary setup and the results yielded from stream classi�cation ex-
periments.

B.4.1. Experiment Setup

The setup of the stream experiment series is similar to the experiment presented
in Section B.3.1. The data preparation phase is the same as shown in Figure B.1.
Before the operator chain shown in Figure B.5, a reference FTC run is preformed
in Figure B.3, in order to create the reduced power set transformed labels as a
reference.
The presented operator chain appears a bit complicated, due to the fact that

three di�erent label attributes are needed:

1. The ground truth label (reduced and power set transformed)

2. the predicted label

3. the label to train on a given stream window.

It has to be noted, that the �rst and last label attributes are not the same. The �rst
one consists of applying the power set transformation method to the full example
set, so as the label reduction technique. These ground-truth labels must not be
trained by the stream classi�ers. For this purpose, the last label attribute us used:
It contains the labels extracted from the current stream window, using the power
set transformation and label reduction technique.
Since RapidMiner does not allow three label attributes for an example set, a

trick is used here: In the stream classi�cation process, the �rst and last noted
label attributes each become a cluster attribute alternately. The corresponding
other one then becomes the label attribute. In the initial state, the ground truth
labels are stored in a cluster attribute.
In case of stream classi�cation, the evolutionary parameter optimization (5.1)

does not only need to optimize the classi�er parameters, but also those of the
StreamKrimp algorithm (e.g. blockSize). Detailed information on these parameters
can be found in Section 4.3.2 and Section 5.3.3. There is a single operator sub-tree
below the optimization process, lead by the StreamKrimp operator (5.2). From the
standard IO object container, this operator receives the tag vector example set. The
operator is responsible for two things: Firstly, it splits the tag vector set into stream
windows and submits only one chunk per classi�cation round to the subsequent
operators. Secondly, it performs the actual Krimp operations, i.e. detection of the
tag distribution and whenever this distribution changes. See Section 5.2 for details.

118

B.4. Stream Classi�cation Experiments

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

Figure B.5.: Stream classi�cation experi-
ment setup.

Inside the StreamKrimp op-
erator, the full term vector set
is retrieved in order to per-
form classi�cation (5.3). The
next operator splits the full
vector set according the given
stream window, so classi�ca-
tion can take place on it. The
current stream window on the
tag vector example set is stored
for later usage in 5.5. After
that, the label attribute trick
is applied, changing the role
of the attribute containing the
ground truth labels to be a la-
bel attribute (5.6).

Operator 5.7 creates a
dummy prediction model,
which predicts unknown for
every label, in case no valid
prediction model is found in
the IO object container. This
is only the case on the �rst
window, where the bootstrap
e�ect (see Section 5.1) occurs.
Starting with the second

stream window, a valid prediction model is present, trained later on in the
stream process. The operators 5.8 and 5.9 perform the actual classi�cation and
evaluation, compared to the ground truth labels.

The next operator (5.10) extracts the item sets mined within the StreamKrimp
operator 5.2, followed by frequent term-based clustering (5.11) for label reduction.
The operator sub-tree 5.12 contains the label mapping, which has already been
shown in Figure B.3. Inside this chain, the label attribute trick is also applied
in reverse direction, so that the ground truth labels are not overwritten during
the label mapping. Finally, the classi�cation model for the current stream window
is generated on these labels (5.13). In the shown setup, this is the custom class
representative based classi�er for which details can be found in Section 4.2. Finally,
the FTC cluster model is removed from the IO object container (5.14).

After the parameter optimization process �nished, the optimal parameter values
and the performance they yielded are stored to disc.

119

Appendix B. Experiments

B.4.2. Experiment Results

Figure B.6 visualizes the α-accuracy yielded by each of the evaluated stream ap-
proaches, using the two classi�ers which performed best on the original data set
(Naive Bayes and the custom approach developed within this thesis). Table B.2
presents the visualized data in numbers (α-accuracy).

Repr. simple

Repr. KRIMP

Repr. cont.

Bayes simple

Bayes KRIMP

Bayes cont.

Reference User 1 User 2 User 3 User 4

Alpha

0

0.25

0.5

0.75

1

Figure B.6.: Stream classi�cation performance

α-accuracy Reference User 1 User 2 User 3 User 4 Avg

Repr.
simple 0.26 0.27 0.34 0.23 0.68 0.36± 0.17
KRIMP 0.31 0.30 0.41 0.17 0.65 0.37± 0.16
cont. 0.19 0.31 0.50 0.18 0.36 0.31± 0.12

Bayes
simple 0.24 0.28 0.35 0.20 0 0.21± 0.12
KRIMP 0.27 0.32 0.34 0.23 0.79 0.39± 0.21
cont. 0.33 0.40 0.52 0.27 0.95 0.49± 0.24

Table B.2.: Stream classi�cation performance

120

Bibliography

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proc. 20th Int. Conf. Very Large Data Bases (VLDB), pages
487�499. MorganKaufmann, 1994.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison Wesley, 1986.

[Azu02] Francisco Azuaje. A cluster validity framework for genome expression
data. Bioinformatics, 18(2):319�320, 2002.

[BEX02] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-based
text clustering. In KDD, pages 436�442. ACM, 2002.

[BJC+04] Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David Gross-
man, and Ophir Frieder. Hourly analysis of a very large topically
categorized web query log. In 27th ACM SIGIR Conf., pages 321�
328, July 2004.

[BLSB04] M. R. Boutell, J. B. Luo, X. P. Shen, and C. M. Brown. Learning
multi-label scene classi�cation. Pattern Recognition, 37(9):1757�1771,
September 2004.

[BS93] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms
for parameter optimization. Evolutionary Computation, 1(1):1�23,
1993.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support
vector machines, 2001. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[DC00] Susan T. Dumais and Hao Chen. Hierarchical classi�cation of web
content. In SIGIR, pages 256�263, 2000.

[DTMV05] Sotiris Diplaris, Grigorios Tsoumakas, Pericles A. Mitkas, and Ioan-
nis P. Vlahavas. Protein classi�cation with multiple algorithms. In
Panayiotis Bozanis and Elias N. Houstis, editors, Panhellenic Con-
ference on Informatics, volume 3746 of Lecture Notes in Computer
Science, pages 448�456. Springer, 2005.

121

Bibliography

[ELM03] Susana Eyheramendy, David D. Lewis, and David Madigan. On the
naive bayes model for text categorization, November 01 2003.

[FBF77] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel.
An algorithm for �nding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software, 3(3):209�226, Septem-
ber 1977.

[FH02] V. Franc and V. Hlavac. Multi-class support vector machine. In
ICPR, pages II: 236�239, 2002.

[Fie00] R. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of Califormia, Irvine,
USA, 2000.

[GÖ03] Lukasz Golab and M. Tamer Özsu. Issues in data stream manage-
ment. SIGMOD Record (ACM Special Interest Group on Management
of Data), 32(2):5�14, June 2003.

[GQ03] Teresa Gonçalves and Paulo Quaresma. A preliminary approach to
the multilabel classi�cation problem of portuguese juridical docu-
ments. In Fernando Moura-Pires and Salvador Abreu, editors, EPIA,
volume 2902 of Lecture Notes in Computer Science, pages 435�444.
Springer, 2003.

[GRS98] Guha, Rastogi, and Shim. CURE: An e�cient clustering algorithm
for large databases. SIGMODREC: ACM SIGMOD Record, 27, 1998.

[Grü05] Peter Grünwald. A Tutorial Introduction to the Minimum Description
Length Principle. MIT Press, March 2005.

[GS04] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for
multi-labeled classi�cation. In Honghua Dai, Ramakrishnan Srikant,
and Chengqi Zhang, editors, PAKDD, volume 3056 of Lecture Notes
in Computer Science, pages 22�30. Springer, 2004.

[GZ03] Bart Goethals and Mohammed Javeed Zaki, editors. FIMI '03, Fre-
quent Itemset Mining Implementations, Proceedings of the ICDM
2003 Workshop on Frequent Itemset Mining Implementations, 19 De-
cember 2003, Melbourne, Florida, USA, volume 90 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2003.

[HK00] Eui-Hong (Sam) Han and George Karypis. Centroid-based document
classi�cation: Analysis and experimental results. Lecture Notes in
Computer Science, 1910:424�??, 2000.

122

Bibliography

[HMS02] Andreas Hotho, Alexander Maedche, and Ste�en Staab. Ontology-
based text document clustering. KI, 16(4):48�54, 2002.

[HPYM04] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree ap-
proach. Data Min. Knowl. Discov, 8(1):53�87, 2004.

[HRGM08] Paul Heymann, Daniel Ramage, and Hector Garcia-Molina. Social tag
prediction. In Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebas-
tiani, Tat-Seng Chua, and Mun-Kew Leong, editors, SIGIR, pages
531�538. ACM, 2008.

[HTF01] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning. Springer, July 2001.

[JFY09] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu.
Cutting-plane training of structural SVMs. Machine Learning,
77(1):27�59, 2009.

[JGZ04] Roberto J. Bayardo Jr., Bart Goethals, and Mohammed Javeed Zaki,
editors. FIMI '04, Proceedings of the IEEE ICDM Workshop on Fre-
quent Itemset Mining Implementations, Brighton, UK, November 1,
2004, volume 126 of CEUR Workshop Proceedings. CEUR-WS.org,
2004.

[JMH+07] Robert Jäschke, Leandro Balby Marinho, Andreas Hotho, Lars
Schmidt-Thieme, and Gerd Stumme. Tag recommendations in folk-
sonomies. In LWA, pages 13�20, 2007.

[Joa97a] T. Joachims. A probabilistic analysis of the rocchio algorithm with
TFIDF for text categorization. In Proceedings of International Con-
ference on Machine Learning, 1997.

[Joa97b] Thorsten Joachims. Text categorization with support vector ma-
chines: Learning with many relevant features. Technical Report LS
VIII-Report, Universität Dortmund, Dortmund, Germany, 1997.

[Joa99] T. Joachims. Making large�scale SVM learning practical. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods � Support Vector Learning, pages 169�184, Cam-
bridge, MA, 1999. MIT Press.

[KL03] S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of sup-
port vector machines with gaussian kernel. Neural Computation,
15(7):1667�1689, 2003.

123

Bibliography

[KTV08] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multi-
label text classi�cation for automated tag suggestion. In Proceedings
of the ECML/PKDD 2008 Discovery Challenge, 2008.

[KW98] M. Kirsten and S. Wrobel. Relational distance-based clustering. Lec-
ture Notes in Computer Science, 1446:261�??, 1998.

[KW07] Andreas Kaspari and Michael Wurst. Multi-objective frequent
termset clustering. In Alexander Hinneburg, editor, LWA, pages 133�
140. Martin-Luther-University Halle-Wittenberg, 2007.

[LA99] Bjornar Larsen and Chinatsu Aone. Fast and e�ective text mining
using linear-time document clustering. In KDD, pages 16�22, 1999.

[LH03] Boris Lauser and Andreas Hotho. Automatic multi-label subject in-
dexing in a multilingual environment. In Traugott Koch and Ingeborg
Sølvberg, editors, ECDL, volume 2769 of Lecture Notes in Computer
Science, pages 140�151. Springer, 2003.

[LO03] Tao Li and Mitsunori Ogihara. Detecting emotion in music. In ISMIR,
2003.

[McC99] Andrew McCallum. Multi-label text cassi�cation by EM. AAAI'99
Workshop on Text Learning., 1999.

[Mie06] Ingo Mierswa. Evolutionary learning with kernels: a generic solution
for large margin problems. In Mike Cattolico, editor, GECCO, pages
1553�1560. ACM, 2006.

[MM04] Paul McNamee and James May�eld. Character N-gram tokenization
for european language text retrieval. Inf. Retr, 7(1-2):73�97, 2004.

[MM05] Ingo Mierswa and Katharina Morik. Automatic feature extraction for
classifying audio data. Machine Learning, 58(2-3):127�149, 2005.

[OFG97] E. Osuna, R. Freund, and F. Girosi. Training support vector ma-
chines: An application to face detection. In CVPR, pages 130�136,
1997.

[Pla98] John Platt. Sequential minimal optimization: A fast algorithm for
training support vector machines. Technical Report MSR-TR-98-14,
Microsoft Research (MSR), April 1998.

[Por80] M. F. Porter. An algorithm for su�x striping. Program, 14(3):130�
137, 1980.

124

Bibliography

[Ran71] W. M. Rand. Objective criteria for the evaluation of clustering meth-
ods. American Statistical Association Journal, 66(336):846�850, 1971.

[Ris] Irina Rish. An empirical study of the naive bayes classi�er. In IJCAI-
01 workshop on "Empirical Methods in AI".

[SOHB07] Sanjay C. Sood, Sara H. Owsley, Kristian J. Hammond, and Larry
Birnbaum. Tagassist: Automatic tag suggestion for blog posts. 2007.

[SS00] Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based
system for text categorization. Machine Learning, 39(2/3):135, 2000.

[SSMB00] B. Scholkopf, A. J. Smola, K. R. Muller, and P. L. Bartlett. New
support vector algorithms. Neural Computation, 12:1207�1245, 2000.

[ST96] Abraham Silberschatz and Alexander Tuzhilin. What makes patterns
interesting in knowledge discovery systems. IEEE Transactions on
Knowledge and Data Engineering, 8(6):970�974, December 1996.

[ST00] Noam Slonim and Naftali Tishby. Document clustering using word
clusters via the information bottleneck method. In SIGIR, pages 208�
215, 2000.

[str02] Fjording the stream: An architecture for queries over streaming sensor
data. February 26 2002.

[SVvL06] Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item sets that
compress. In Joydeep Ghosh, Diane Lambert, David B. Skillicorn, and
Jaideep Srivastava, editors, SDM. SIAM, 2006.

[SWY75] G. Salton, A. Wong, and A. C. S. Yang. A vector space model for
automatic indexing. Communications of the ACM, 18:229�237, 1975.

[TBHG00] Pang-Ning Tan, Hannah Blau, Steven A. Harp, and Robert P. Gold-
man. Textual data mining of service center call records. In KDD,
pages 417�423, 2000.

[TCCL07] Meng-Hsiun Tsai, Jun-Dong Chang, Sheng-Hsiung Chiu, and Ching-
Hao Lai. Identi�cation of marker genes discriminating the pathologi-
cal stages in ovarian carcinoma by using support vector machine and
systems biology. In Marcus Randall, Hussein A. Abbass, and Janet
Wiles, editors, ACAL, volume 4828 of Lecture Notes in Computer
Science, pages 381�389. Springer, 2007.

[TK07] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classi�cation:
An overview. IJDWM, 3(3):1�13, 2007.

125

Bibliography

[tLjL03] Hsuan tien Lin and Chih jen Lin. A study on sigmoid kernels for SVM
and the training of non-PSD kernels by SMO-type methods, May 21
2003.

[VC74] V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in
Russian]. Nauka, Moscow, 1974. (German Translation: W. Wapnik &
A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie�Verlag,
Berlin, 1979).

[vLS08] Matthijs van Leeuwen and Arno Siebes. Streamkrimp: Detecting
change in data streams. In Walter Daelemans, Bart Goethals, and
Katharina Morik, editors, ECML/PKDD (1), volume 5211 of Lecture
Notes in Computer Science, pages 672�687. Springer, 2008.

[WF05] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques (Second Edition). Morgan Kaufmann, 2005.

[wHcCjL03] Chih wei Hsu, Chih chung Chang, and Chih jen Lin. A practical guide
to support vector classi�cation chih-wei hsu, chih-chung chang, and
chih-jen lin, October 29 2003.

[WK96] G. Widmer and M. Kubat. Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69�101, 1996.

[Yan99] Yiming Yang. An evaluation of statistical approaches to text catego-
rization. Information Retrieval, 1(1-2):69�90, 1999.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on fea-
ture selection in text categorization. In International Conference on
Machine Learning, pages 412�420, 1997.

[Zak98] Mohammed J. Zaki. Theoretical foundations of association rules,
February 08 1998.

[ZZ07] M. L. Zhang and Z. H. Zhou. ML-KNN: A lazy learning approach
to multi-label learning. Pattern Recognition, 40(7):2038�2048, July
2007.

126

