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Abstract

Real world data is likely to contain an inherent structure. Those structures may be
represented with graphs which encode independence assumptions within the data.
Performing inference in those models is nearly intractable on mobile devices or
casual workstations. This work introduces and compares two approaches for ac-
celerating the inference in graphical models by using GPUs as parallel processing
units. It is empirically showed, that in order to achieve a scaleable parallel algo-
rithm, one has to distribute the workload equally among all processing units of a
GPU. We accomplished this by introducing Thread-Cooperative message compu-
tations.

1 Introduction

Data which is extracted from ubiquitous devices like smartphones, medical devices or sensor net-
works is likely to contain an inherent structure. Those structures may be represented with graphs
which encode independence assumptions within the data. However, performing inference on those
models with an complex structure on a large amount of data is computational expensive and nearly
intractable on mobile devices or casual workstations. To overcome this issue, we take advantage
of recent developments in computer hardware, namely programmable Graphics Processing Units
(GPUs) to accelerate the inference process.

Some machine learning algorithms are already adapted for GPUs, for instance, Support Vector Ma-
chines [1, 2], frequent sets [5] or k-Means [19]. Furthermore, special purpose variants of belief
propagation e.g. for stereo vision tasks are presented by several groups [3, 7, 8, 11, 17]. There,
the graphical structure is always hardcoded into the algorithm which is tailored to measure for task-
specific data. In case of discriminative graphical models, there is one known distributed parallel
approach by Phan et al. [15] which is restricted to linear-chain structures. The GraphLab framework
[12] is a general approach for distributing the computations which arise in inference tasks among
several processing units or cluster nodes. Although our algorithm is currently based on proprietary
data structures, it is currently ported to work within the GraphLab framework.

In this work, we investigate the parallelization of Loopy Belief Propagation (LBP) with an emphasis
on the actual message computation. LBP corresponds to the application of ordinary Belief Propa-
gation (BP) [14] to graphs with loops. It is a broadly used algorithm for probabilistic inference in
graphical models like markov random fields (MRFs) or conditional random fields (CRFs). For the
sake of generality, we will use the term LBP, even if the underlying graphical model contains no
loops.
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2 Parallel LBP for GPUs

A GPU may be used as a parallel processing unit beside the usual central processing unit. Here, par-
allel processing means the concurrent execution of several instances of one and the same procedure.
To perform such computations, a GPU is composed of several so called Multiprocessors (MPs).
Each of those MPs consists of a fixed number P of cores which perform the actual arithmetic or
logic computations. Cores of different MPs may execute different instructions while all cores within
an MP have to execute the very same instruction simultaneously. However, the operands of all cores
within an MP may differ, what they usually do. Each MP is equipped with a small, low-latency
shared memory of size S and is furthermore connected to a large high-latency global memory.

An instance of a concurrently executed procedure is called thread. The threads are partitioned into
equally sized sets, called thread-blocks [13]. When a parallel procedure is executed, the thread-
blocks are automatically assigned to an MP with free resources and the corresponding threads to
this MP’s cores. A GPU may manage substantially more threads than real cores are available, since
their computations are used to hide global memory’s latency. To achieve the maximum throughput,
there always have to exist some threads which perform computations on the cores while other threads
are waiting for their memory requests. Design patterns for parallel algorithms may help to utilize all
cores of a GPU. Parallel reduction is a pattern for the generic parallelization of functions satisfying
the associative property. As mentioned later, we apply the parallel reduction algorithm as proposed
by Harris [9], which is known to achieve the maximum throughput on GPUs.

We will now introduce the necessary notation and the basic concept of LBP. Following [10], we
focus on graphical models which are represented as factor graphs. A factor graph G = (V,E, F )
consists of a set of variable nodes V , a set of factor nodes F and an undirected edge set E = F ×V .
The variable nodes are indentified with discrete random variables. Their joint realization is denoted
with v. Let vU be the joint realization v restricted to nodes in an arbitrary set U ⊆ V . For notational
convenience, let v describe the node v as well as the singleton set {v}. In the following, we assume
that the variable nodes are partitioned into two distinct sets X and Y with domains X and Y .The
nodes f ∈ F correspond to positive functions f : Y |∆(f)| × X |∆̃(f)| → R+, where ∆ : F → 2Y

assigns to a factor node it’s adjacent nodes1 in Y and ∆̃ those in X , respectively. The computation
of conditional marginal probabilities p(y∆(f)|x) with LBP consists in repeatedly computing Eq. 1
and 2.

mf→v(yv|x(i)) =
∑

y′∆(f)−v∈Y|∆(f)|−1

f(yv,y
′
∆(f)−v|x(i))

∏
u∈∆(f)−v

mu→f (y′u|x(i)) (1)

mv→f (yv|x(i)) =
∏

g∈∆−1(v)−f

mg→v(yv|x(i)) (2)

The factor messages (Eq. 1) have to be computed for all possible combinations of factor node
f ∈ F , neighbor v ∈ ∆(f), realization yv ∈ Y and instance x(i), 1 ≤ i ≤ b. Although the number
of variable messages (Eq. 2) is similar to the number of factor messages, the time complexity
O(maxv∈V |∆−1(v)|) for computing such a message from v to f is rather low if compared to the
time complexity O(maxf∈F |∆(f)||Y||∆(f)|−1) for computing a factor message from f to v. The
constant b denotes the number of given realizations x(i) ∈ X |X|, i.e. the number of parallel pro-
cessed training instances or the number of instances whose most probable realization of Y should be
predicted. If the underlying graph contains no loops, LBP will converge after a number of iterations
which only depends on the number of edges. Otherwise, the algorithm is not guaranteed to converge
and is therefore terminated after a fixed number I of iterations. In both cases, the (approximated)
single node marginals may be computed with p(yv|x(i)) ∝ mf→v(yv|x(i))mv→f (yv|x(i)). We
now present two appraoches for parallel LBP.

Data-Parallel LBP To compute the factor messages in a data-parallel manner,
|F | × maxf∈F |∆(f)| × |Y| concurrent blocks are instantiated, each with b threads. In this
setup, thread i in block (f, v, y) computes message mf→v(y|x(i)). The time complexity per thread

12U denotes the power set of a set U ⊆ V .
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is O(maxf∈F |∆(f)||Y||∆(f)|−1). Afterwards, the variable messages are computed likewise with
|V | ×maxv∈V |∆−1(v)| × |Y| concurrent blocks.

Thread-Cooperative LBP Considering the summation in Eq. 1, one may observe that all out-
going messages of one factor node have several terms in common. This observation leads to the
Thread-Cooperative version of LBP. In this approach, one block for each pair of factor node f and
given instance x(i) is launched. The number T of threads per block is a free parameter of the algo-
rithm. Each thread computes |∆(f)| × |Y| partial outgoing messages which are eventually merged.
To do so, let J(f,x) be the set {j(f,x,y) = f(y|x)

∏
v∈∆(f) mv→f (yv|x) : ∀y ∈ Y |∆(f)|}. A

thread t, 1 ≤ t ≤ T in block (f,x(i)) computes |J(f,x(i))|/T elements of J(f,x(i)). Once such
an j(f,x(i),y) is computed, the partial outgoing messages of thread t may be updated with Eq. 3.

m
(t+1)
f→v (yv|x(i)) = m

(t)
f→v(yv|x(i)) +

j(f,x(i),y)

m
(t)
v→f (yv|x(i))

,∀v ∈ ∆(f) (3)

When all |J(f,x(i))| have been processed cooperatively by all threads in a block, the par-
tial messages are merged by parallel reduction. This results in a time complexity of
O(maxf∈F |∆(f)||Y||∆(f)|T−1 + |∆(f)||Y| log T ) per thread. Here, the left term is an outcome
of computing the t-th subset of J(f,x(i)) and the right term is introduced by the final reduction and
may be intrepreted as parallelization overhead. Finally, one may recognize the possibility to launch
T × R threads per block instead of T , in order to perform the updates in Eq. 3 concurrently for all
neighbors with R threads. This introduces the factor R−1 to the left term of the time complexity.
The just described algorithm is called Thread-Cooperative LBP.

The optimal values for T and R, in terms of runtime, heavily depend on the actual GPU and the
actual factor graph. They may be obtained by a grid search, constrained on solutions which satisfy
((T · R) mod P ) = 0 and B · T · maxf∈F |∆(f)| · |Y| ≤ S, where B is the desired number of
concurrently scheduled blocks per MP. The first constraint arises from the fact, that all processing
units within one MP have to be used. The second constraint ensures, that the partial messages will
fit into an MP’s shared memory.

3 Evaluation

We now give a runtime comparison of the LBP variants described above. For the first comparsion,
we used the Thread-Cooperative Forward-Backward (FB) algorithm as well, which is a specialized
LBP variant for Linear-Chain structures. The messages are propagated sequentially from the left-
most to the right-most node in the graph and back, which reduces the number of blocks from |F |× b
to b. We used our own C++/CUDA-C code for this2. The GPU which was used in the following
experiments is an NVIDIA GeForce GTX580 consumer GPU. The repetition of some experiments
on an NVIDIA Tesla C2050 GPU, which is designed for HPC, yields similar or slightly worse
results.

With the exception of FB which is exact, we approximated the marginals with I =
√
|V | iterations.

Thread-Cooperative LBP was configured with T = 16 and R = 2. The values where determined
heuristically.

Figure 1 shows the results on the whole CoNLL-2000 data set [18] on the left and the runtime
on single instances of Chen Yanover’s PROTEIN data set [20] on the right. The Data-Parallel al-
gorithm outperforms the Thread-Cooperative approach when the number of instances per batch is
greater than 8. The reason is that the Thread-Cooperative approach uses slightly more resources in
terms of registers and shared memory which reduces the number of concurrently scheduled blocks
per MP. Nevertheless, the Thread-Cooperative approach clearly outperforms the plain Data-Parallel
approach on models with a high number of factors, as expected from the asymptotically lower time
complexity. As the right plot shows, the difference in runtime becomes higher as the graphical com-
plexity grows. Although we used b = 1 in this evaluation, the second plot will look similar for

2The code is available for download at http://sfb876.tu-dortmund.de/crfgpu
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Figure 1: The left plot shows how the runtime evolves on a fixed |F | and increasing b. The right plot
shows how runtime evolves for fixed b = 1 and increasing |F |.

different fixed values of b. This example with b = 1 should show, that, in contrast to the Thread-
Cooperative approach, the Data-Parallel LBP is not able to distribute the workload of one single
instance among all cores of a GPU. Future experiments will involve synthetic data sets to evaluate
how these algorithms perform when either |Y| or maxf∈F |∆(f)| is raised.

As we focus on the actual message computations, we used a plain full parallel (flooding) schedule
in the above runtime evaluation. Recently, Gonzalez et al. developed the ResidualSplash (RS)
message propagation algorithm [6] for parallel inference in graphical models, which is known to be
optimal in terms of the number of message computations. The combination of Thread-Cooperative
message computation and RS or other sophisticated schedulings like residual belief propagation [4]
is ongoing work.

To finally compare our approach to sequential variants of LBP, we propagated the same number of
messages with the ResidualSplash implementation3 by Gonzales et al. and our algorithm and mea-
sured the runtime. To keep things simple, we used the round-robin scheduler and fixed the number
of processed nodes. We ran both approaches on the protein 1mv8 which consists of |V | = 436 vari-
able nodes, |F | = 4476 factors and |E| = 12992 edges. The algorithms propagated asymptotically
O(maxf∈F |∆(f)||F ||Y|+ maxv∈V |∆−1(v)||V ||Y|) messages. Since we used a pairwise model,
the value of maxf∈F |∆(f)| was bound by two. The number of labels was 31 for this protein. It
turned out, that our algorithm propagated the messages ≈ 6 times faster than the CPU implementa-
tion.

Our comparison of different parallel algorithms for the computation of LBP messages showed em-
pirically, that the performance heavily relies on the actual structure of the processed data. As a result,
current approaches for implicitly parallel domain-specific languages for machine learning like Op-
tiML [16] should consider an explicit description of the input data in order to tackle either highly
data-parallel tasks with a high number of training instances or tasks where the high complexity of
single instances is the challenging part. Future work will include a comparison with auto-generated
OptiML code.

A comparison on a larger set of proteins, different data and other message passing schedules will
be done in future. It is also planned to integrate our approach into GraphLab [12] to have a broader
platform for comparison with other inference methods and to benefit from the several already im-
plemented scheduling algorithms.
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