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« Churn management in Telcos
« A Churn Analysis system for wireless network services

« The MiningMart solution
e Conclusions
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2 Orientation is kev for Telcos

Most Telcos’ products and services: commodities (no longer

relevant for competitive advantage)

Telcos: evolving a process-oriented organization (CRM, SCM)
— CRM application architectures: integrate front-office / back-office

applications
— Through 2005, telcos: mktg automation applications + call centers =>
unified customer interaction frameworks

Europe: Analytical CRM solutions market growing rapidly
— CAGR: ~ 50% (from $0.5 billion in 1999 to $3.5 billion in 2004)

Telco’s investment in Analytical CRM moderate due to
iInvestments in 2.5G and 3G (UMTS) technology, but relevant
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s Churn management: a bottom
line issue

ITALIA

e Attracting thousands of new subscribers is worthless if an equal
number are leaving
 Minimizing customer churn provides a number of benefits, such
as.
— Minor investment in acquiring a new customer
— Higher efficiency in network usage
— Increase of added-value sales to long term customers
— Decrease of expenditure on help desk
— Decrease of exposure to frauds and bad debts
— Higher confidence of investors
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hurn management: scooping
~___the problem (1
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« Churn can be defined and measured in different ways

— “Absolute” Churn. number of subscribers disconnected, as a
percentage of the subscriber base over a given period

— “Line” or “Service” Churn. number of lines or services disconnected,
as a percentage of the total amount of lines or services subscribed by
the customers

— “Primary Churn”. number of defections

— “Secondary Churn”. drop in traffic volume, with respect to different
typology of calls
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« Measuring churn is getting more and more difficult

— Growing tendency for Business users to split their business between
several competing fixed network operators

— Carrier selection enables Residential customers to make different
kind of calls with different operators

— Carrier pre-selection and Unbundling of the Local Loop makes it very
difficult to profile customers according to their “telecommunication

needs”
 Other frequent questions for Fixed Network Services

— What if a customer changes his type of subscription, but remains in
the same telco? What if the name of a subscriber changes? What if he
relocates?
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~~The case study: Churn Analysis

2 for wireless services

« The framework
— A major Italian network operator willing to establish a more effective
process for implementing and measuring the performance of loyalty

schemes

 Objectives of the “churn management” project
— Building a new corporate Customer Data Warehouse aimed to
support Marketing and Customer Care areas in their initiatives

— Developing a Churn Analysis system based upon data mining
technology to analyze the customer database and predict churn
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Sponsors

— Marketing dept., IT applications, IT operations
Analysis target

— Residential Customers, subscriptions

Churn measurement

— Absolute, primary churn

Goal:

— Predict churn/no churn situation of any particular customer given 5
months of historical data
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Customer Profilina Consumer:
21 millions of residential customers

e Usage patterns analysis
o i ‘ of Voice Services by
i . single subscriber line

Customer Profiling Business:
2 millions of business customers
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Data Server

.|
*Campaign Targets l“
*New product / Marketing
services
eLoyalty schemes
*Performance
analysis
Marketing =~ | |[EEESSTT U :
automatio' | i
Service M ;
mati - ) | :
ags ato' Decision Engine ; i
*W Data Collection &
Sales Customer data Transformation
automatio Market data
Sales data , Contracts
Customer service contacts .“||| Tariff plans
Billing data
Front-office Accounts data
Systems Fraud / Bad debts data
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Input Data

» Customer demographics
Basic customer information

» Service Profile
Products/services purchased
by each customer.

e Tariff plans
Details of the tariff scheme in
use

» Extra service information
»Special plans / rates
=Service bundles

» Call data aggregated by month

* Billing data aggregated by month

« Complaint information

*More than 500 indicators per customer e Fraud and bad debts data
sExtraction delay: 2 months e Customer service contacts
eLoading: on a monthly basis  Sales force contacts
*Size: 1.5 Th * Market data
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The data mining process has been divided into five tasks
as follows:

ChurnPrediction

@ .2\ ChurnPrediction
& 7 Step 1 - Treat missing values in COR

& 7 Step 2 - Transpose COR from transactional to relational form

& 7 Step 3 - Transpose REVEMLUES fraom transactional to relational farm
&= 7 Step 4 - Create derived aftributes and customer profile

&= 7 Step 5- Churn Modeling
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1 Filter out customers with CDRs featuring missing values
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Select revenue records associated with calls
originated in a given month (from M1 to M5)

Convert revenue records from a transactional form into a

relational one

Add a new attribute that sums up the revenue of calls

originated from month M1 tom

|_u

i)nth M5

Save revenue records by joining revenue records in
relational form and customer records by customer

key
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BEGIN
if ALL_M5 <= 483.526001 then

if HANDSET ="'ASAD1' then
return ‘ACTIVE';
elsif HANDSET ='ASAD9' then
if PEAK_M1 <= 139.363846 then
if OFFP_M3 <= 106.607796 then
return ‘ACTIVE';

else
return 'CHURNED';
end if;
else
return 'CHURNED';
end if;

elsif HANDSET ='S50' then
if PEAK M3 <= 144.418304 then
return 'CHURNED';
else
if REV_SUM <= 294.393341 then
if L O_S BAND ="HIGH' then
return 'ACTIVE"
elsif L O_S BAND ='MEDIUM' then
return 'ACTIVE"
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Training / test set: 70% / 30%

HIGH customer model performance

CHURNER

ACTIVE
PRED_ACT

PRED_CHN

CHURNER

ACTIVE
PRED_ACT

PRED_CHN
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100
1

LOW customer model performance

CHURNER

ACTIVE
PRED_ACT

PRED_CHN

CHURNER

ACTIVE
PRED_ACT

PRED_CHN
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Data Set Size (hum. records) |Pre-processing Time mins) | Aodeling Time (hours)
& (00 17.3 4.3
a0 oo 270 13.5
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o Usability

e Mining process speed-up

e« Mining process quality

e Integration (into the business processes)
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« Human Computer Interface is user-friendly and effective. Few
steps required to implement any data mining process

* Interface quality compares to the ones of leading commercial
tools (SPSS, SAS). Improves on IBM Intelligent Miner’s interface
with respect to a number of features

e Suggestions for future work
— Definition of concepts can be further simplified (db attributes defined
by directly editing table column names)
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 Preprocessing operators show quite good scalability on large
data set:

— MMart leverages Oracle scalability when carrying out preprocessing
tasks. Overhead due to parsing of operators is negligible (unless for
very small datasets)

— Modeling operators are not optimized
 Processing chains can be quickly tested during chain set-up

 Multistep and loopable operators enable users to define parallel
mining tasks consistently and effectively

 Processing chains can be saved an restored, allowing versioning
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 Less trials required to develop the data mining solution
— QOperator constraints drive unskilled users to build correct and
effective analytical applications
— Users achieve a better understanding of data structure by:
* Browsing source and processed data
« Computing descriptive statistics
— Operator chains makes it possible to implement data mining best-
practices
e Suggestions for future work
— Improve graphical investigation features

— Improve workgroup enabling features: multiple users capabilities,
definition of user roles and access rights
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 Best practices may be easily pre-packaged

« Libraries of data mining applications may be developed and
customized to satisfy new business requirements

e MMart framework ensures chain consistence and correctness,
avoiding potential conceptual mistakes

 Users can focus their effort on modeling tasks rather than on
preprocessing tasks

« Domain knowledge improves and extend usability of pre-
packaged data mining applications
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« The Mining Mart system may be integrated into the Analytical
CRM platform as the analytical extension of either the enterprise
data warehouse or the business-oriented data marts
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« Speed up for some preprocessing tasks increased by 50% at least

 Power users may find Mining Mart as much easy to use as the
leading commercial dm platforms

e It enables building libraries of predefined data mining applications
that can be easily modified

« MMart guarantees the highest scalability, since it exploits leading
commercial db tools features

e Quality of data mining output increases as the number of
preprocessing trials decrease in number

e Bottom line: Mining Mart supports efficiently and effectively the
preprocessing stage of a data mining process
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