DeepLearning on FPGAs Introduction to FPGAs Sebastian Buschjäger Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8 November 17, 2016 Observation 1: Even smaller images need a lot of neurons Our approach: Discrete convolution $$k_c = \sum_{i=1}^{r} w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | * $\begin{vmatrix} 1 & -0 \\ -0.5 & 1 \end{vmatrix}$ image kernel / weights / filter Observation 1: Even smaller images need a lot of neurons Our approach: Discrete convolution $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | image $$180 \cdot 1 - 80 \cdot 0.5 - 20 \cdot 0.5 + 120 \cdot 1 = 250$$ kernel / weights / filter Observation 1: Even smaller images need a lot of neurons Our approach: Discrete convolution $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | $* \begin{array}{c|cccc} & 1 & -0.5 \\ \hline -0.5 & 1 & & = & \\ \hline & 250 & 67 & & \\ \hline \end{array}$ $10 \cdot 1 - 120 \cdot 0.5 - 45 \cdot 0.5 + 140 \cdot 1 = 67$ kernel / weights / filter image DeepLearning on FPGAs Observation 1: Even smaller images need a lot of neurons Our approach: Discrete convolution $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | $$170 \cdot 1 - 20 \cdot 0.5 - 122 \cdot 0.5 + 39 \cdot 1 = 138$$ kernel / weights / filter Observation 1: Even smaller images need a lot of neurons Our approach: Discrete convolution $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | $$153 \cdot 1 - 11 \cdot 0.5 - 70 \cdot 0.5 + 200 \cdot 1 = 255$$ kernel / weights / filter # Recap: CNNs and weight sharing #### Mathematically: # Recap: Backpropagation for CNNs with sigmoid activation ## **Gradient step:** $$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot 180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$ #### Recursion: $$\delta^{(l+1)} = \delta^{(l)} * rot180(w^{(l+1)}) \cdot f_{i,j}^{(l)} (1 - f_{i,j})^l$$ # Recap: Backpropagation for CNNs with sigmoid activation # **Gradient step:** $$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_{j}^{(l)} & = & b_{j}^{(l)} - \alpha \cdot \delta_{j}^{(l)} \end{array}$$ #### Recursion: Hardware: Current trends **Moore's law:** The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years ¹Intel predicts 5nm transistors to be available around 2020. # Hardware: Current trends **Moore's law:** The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years Fact 1: Engineering is currently producing 11 - 16nm transistors¹ Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors ¹Intel predicts 5nm transistors to be available around 2020. # Hardware: Current trends **Moore's law:** The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years Fact 1: Engineering is currently producing 11-16nm transistors 1 Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors ### How to deal with this problem - Multi/Many core systems - Add specialized components in CPU - Use dedicated hardware for specific tasks ¹Intel predicts 5nm transistors to be available around 2020. # Hardware Overview #### Fact: speed: fastest energy: $\sim \mu W$ application specific costs: expensive #### Fact: speed: fast energy: \sim W general purpose costs: cheap # Hardware Overview ### Fact: - speed: fastest - energy: $\sim \mu W$ - application specific - costs: expensive ### Hope: - speed: faster - energy: ~ mW - general + specific - costs: cheap #### Fact: - speed: fast - energy: \sim W - general purpose - costs: cheap # FPGA: How does it work? - chip layout 2D grid - configurable connections between blocks - configurable logic blocks (CL) - input/output blocks (IO) - hard-wired on boards with standard interface - programmed and flashed with external PC DeepLearning on FPGAs 7 # FPGA: Signal Routing # FPGA: Configurable Logic Block # FPGAs: Strengths - Inherent parallelism: We can perform computations in real parallel on any level of granularity. - Large on-chip memory: Modern CPUs offer Caches in the range of $\sim 8 \text{Mb}$. Today's largest FPGA chips offer on-chip memory in the range of $\sim 64 \text{ Mb}$ - **Arbitrary word sizes:** Modern CPUs and GPUs are built and optimized for specific word sizes, e.g. 64 bit. In FPGAs, the word size is arbitrary and can fit the problem given. - Large IO capabilities: Modern CPUs and GPUs have to use PCIe and direct memory access (DMA) for data IO. FPGAs are free to use what's necessary. ## FPGAs: Weaknesses - Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz - **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware - No optimizations: CPUs / GPUs offer a well developed tool-chain support. Additionally, modern CPUs/GPUs often offer specialized hardware instructions. **Note 1:** High-end FPGAs offer clock rates around 800 Mhz **Note 2:** High-end FPGAs also offer specialized hardware blocks, e.g. digital processing units or floating point units **Note 3:** Tool support for FPGAs are growing. The so-called 3rd wave of tools finally enables FPGAs for the mass-market ## Hardware Description Languages (HDL): - describe hardware on transistor and gate level - modelling real concurrency - modelling signal flow & timings - low level bit operations - high level operations like sums, products, ... - verified using simulator ### Hardware Description Languages (HDL): - describe hardware on transistor and gate level - modelling real concurrency - modelling signal flow & timings - low level bit operations - high level operations like sums, products, ... - verified using simulator **Note:** HDLs are used by hardware designers. HDLs are extremely low-level, but allow ultimate control over your design **But:** HDL designs need time and care \rightarrow We focus on HLS Basic idea: Automatically translate high level code into HDL - Automate tedious work - Compile code specifically for target device - Lets you explore design space effectively - Output should be reviewed - Code must be changed for HLS tool - Only works on subset of high level language Basic idea: Automatically translate high level code into HDL - Automate tedious work - Compile code specifically for target device - Lets you explore design space effectively - Output should be reviewed - Code must be changed for HLS tool - Only works on subset of high level language **Note:** HLS lets you describe your hardware in C-Code and the HLS tool will try to guess what you code meant and put that on the FPGA (more later) Synthesis: Calculate CL configurations - → **So far:** HDL contains abstractions, e.g. summation - → **Thus:** Compile these to a gate description, e.g. half/full-adder - \Rightarrow The netlist contains the functionality of all units of the design ### Synthesis: Calculate CL configurations - → **So far:** HDL contains abstractions, e.g. summation - \rightarrow **Thus:** Compile these to a gate description, e.g. half/full-adder - \Rightarrow The netlist contains the functionality of all units of the design ### Place & Route: Calculate signal routing - →**So far:** We have netlist with all functional units of our design - \Rightarrow Calculate, which CL implements which functionality and how they are connected **Important:** Synthesis and place & route may fail! **Important:** Synthesis and place & route may fail! **Observation 1:** HDL and HLS allow us to express things, which are not existent in hardware, e.g. files **Observation 2:** Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock. **Important:** Synthesis and place & route may fail! **Observation 1:** HDL and HLS allow us to express things, which are not existent in hardware, e.g. files **Observation 2:** Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock. **Note 1:** We aim for a clock around 125 - 150 Mhz. **Note 2:** Synthesis and place & route perform a lot of optimizations. Thus this phase is slow (minutes - hours) **Observation 1:** We can use IP from other programmers¹ ¹E.g. http://opencores.com/ **Observation 1:** We can use IP from other programmers¹ ### **Observation 2:** There are so-called soft processors - Small processors with own ISA - Mostly configurable in terms of Caches, Pipelining, floating point operation etc. - Different optimizations for energy or throughput available - Usually programmed in C-like language with own compiler ¹E.g. http://opencores.com/ # Deep Learning on FPGAs # How do we put Deep Learning on FPGAs? Deep Learning: Some considerations Why FPGAs for Deep Learning? Fact: DeepLearning networks still have a lot of parameters Additional: Many SGD steps are required to get reasonable results ## Deep Learning: Some considerations #### Why FPGAs for Deep Learning? **Fact:** DeepLearning networks still have a lot of parameters **Additional:** Many SGD steps are required to get reasonable results - We need a lot of data - We need to learn a lot of parameters - We need to perform many SGD steps until convergence ## Deep Learning: Some considerations #### Why FPGAs for Deep Learning? **Fact:** DeepLearning networks still have a lot of parameters **Additional:** Many SGD steps are required to get reasonable results - We need a lot of data - We need to learn a lot of parameters - We need to perform many SGD steps until convergence **Additional:** We want to use Deep Learning in embedded context's, such as car, robots, etc. \Rightarrow Fast and energy efficient hardware and fast implementations required! ## Deep Learning: A hardware perspective Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware DeepLearning on FPGAs #### Deep Learning: A hardware perspective Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware - **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available. - From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular. #### Deep Learning: A hardware perspective Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware - **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available. - From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular. - Upcoming: More specialized hardware is being used - Januar 2016: Nvidias Drive PX2 for autonomous cars - June 2016: Googles Tensor Processing Unit (TPU) **Bottom-Line:** Hardware-specific implementations play a great part in DeepLearning! #### Some facts about hardware: - CPUs are optimized towards latency - \rightarrow Execute a single operation as fast as possible - GPUs are optimized towards throughput - \rightarrow Process as much data a as fast as possible - FPGAs are optimized towards? #### Some facts about hardware: - CPUs are optimized towards latency - → Execute a single operation as fast as possible - GPUs are optimized towards throughput - → Process as much data a as fast as possible - FPGAs are optimized towards? Fact: CPU and GPU designers are smart people! \Rightarrow It is though to beat a CPU / GPU only with an FPGA #### Some facts about hardware: - CPUs are optimized towards latency - → Execute a single operation as fast as possible - GPUs are optimized towards throughput - → Process as much data a as fast as possible - FPGAs are optimized towards? **Fact:** CPU and GPU designers are smart people! ⇒ It is though to beat a CPU / GPU only with an FPGA **Rule-of-thump:** CPU is good for control flow, FPGAs / GPUs are good for number crunching Thus: Combine FPGAs with CPUs **Either:** As PCle cards in desktop / server systems - Needs a custom written driver for PCIe - Usually needs special licenses on FPGA chip or own PCle protocol implementation - Requires full desktop system Or: fully integrated on development boards - On-board connections are known, thus 1 driver needed - Does not require full desktop system ⇒ Less energy **Either:** As PCle cards in desktop / server systems - Needs a custom written driver for PCIe - Usually needs special licenses on FPGA chip or own PCle protocol implementation - Requires full desktop system Or: fully integrated on development boards - On-board connections are known, thus 1 driver needed - Does not require full desktop system ⇒ Less energy Our focus: Embedded boards with FPGA Co-Processors #### Xilinx Zedboard Board: Xilinx ZedBoard ■ **ARM Cortex-A9** Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM ■ **Memory:** 512 Kb Cache FPGA: Xilinx Artix-7 Z-7020 **LUT:** 53200 ■ **CLB**: 83000 ■ Block-Ram: 4.9 Mb ■ **DSP:** 220 #### Xilinx Zedboard **Board:** Xilinx ZedBoard ARM Cortex-A9 Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM ■ **Memory:** 512 Kb Cache FPGA: Xilinx Artix-7 Z-7020 **LUT:** 53200 **CLB:** 83000 ■ Block-Ram: 4.9 Mb ■ **DSP**: 220 **Usually:** CPUs also do not offer a runtime system **Thus:** Run full blown Linux on CPU + develop software for CPU + specify hardware accelerator for FPGA \Rightarrow Easy software development for "glue" code + fast energy and efficient computations DeepLearning on FPGAs #### Xilinx Zedboard Board: Xilinx ZedBoard ARM Cortex-A9 Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM ■ Memory: 512 Kb Cache **FPGA:** Xilinx Artix-7 Z-7020 **LUT:** 53200 **CLB:** 83000 ■ Block-Ram: 4.9 Mb ■ **DSP**: 220 **Usually:** CPUs also do not offer a runtime system **Thus:** Run full blown Linux on CPU + develop software for CPU + specify hardware accelerator for FPGA \Rightarrow Easy software development for "glue" code + fast energy and efficient computations Question: How do we control the FPGA hardware accelerator? # Software driven System on a Chip development (SDSoC) Note: FPGA interface might change Thus: Linux kernel driver needed for every new hardware block \rightarrow Writing Linux kernel drivers is a though task # Software driven System on a Chip development (SDSoC) Note: FPGA interface might change Thus: Linux kernel driver needed for every new hardware block \rightarrow Writing Linux kernel drivers is a though task Thus: We use software for that: Xilinx SDSoC - Standard eclipse GUI for C/C++ programming - Standard gcc ARM compiler for C/C++ code - HLS automatically compiles C/C++ code to HDL - SDSoC generates a kernel driver based on the HLS' output # Software driven System on a Chip development (SDSoC) Note: FPGA interface might change Thus: Linux kernel driver needed for every new hardware block \rightarrow Writing Linux kernel drivers is a though task Thus: We use software for that: Xilinx SDSoC - Standard eclipse GUI for C/C++ programming - Standard gcc ARM compiler for C/C++ code - HLS automatically compiles C/C++ code to HDL - SDSoC generates a kernel driver based on the HLS' output **Thus:** SDSoC compiles C/C++ code, generated HDL code from C/C++ and generated Linux kernel drivers In the end: We get a bootable Linux image with integrated hardware accelerator #### **AXI-Interface** Fact 1: The FPGA can support any hardware interface we desire Fact 2: The ARMs hardware interface is fixed \Rightarrow The ARM and the FPGA are connected using the AXI interface #### **AXI-Interface** **Fact 1:** The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed \Rightarrow The ARM and the FPGA are connected using the AXI interface AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants: - AXI-Lite: easy, simple communication - AXI-Stream: high throughput in streaming settings - AXI: high speed, low latency #### **AXI-Interface** **Fact 1:** The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed \Rightarrow The ARM and the FPGA are connected using the AXI interface AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants: - AXI-Lite: easy, simple communication - AXI-Stream: high throughput in streaming settings - AXI: high speed, low latency **Note:** HLS generates the desired interface for us #### High Level Synthesis: Interface generation ``` \#define PRAGMA_SUB(x) _Pragma (\#x) #define DO_PRAGMA(x) PRAGMA_SUB(x) float diff(float const pX1[dim], float const pX2[dim]) const { DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim); DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_): 6 #pragma HLS INTERFACE s_axilite port=return 8 float sum = 0: 9 for (unsigned int i = 0; i < dim; ++i) { 10 sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]); 11 12 13 return sum; ``` Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size! #### High Level Synthesis: Interface generation ``` \#define PRAGMA_SUB(x) _Pragma (\#x) #define DO_PRAGMA(x) PRAGMA_SUB(x) float diff(float const pX1[dim], float const pX2[dim]) const { DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim); DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_): 6 #pragma HLS INTERFACE s_axilite port=return 8 float sum = 0: 9 for (unsigned int i = 0; i < dim; ++i) { 10 sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]); 11 12 13 return sum; ``` Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size! Note 2: We use a special pragma if we need to use parameters #### High Level Synthesis: Interface generation ``` \#define PRAGMA_SUB(x) _Pragma (\#x) #define DO_PRAGMA(x) PRAGMA_SUB(x) float diff(float const pX1[dim], float const pX2[dim]) const { DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim); DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_): 6 #pragma HLS INTERFACE s_axilite port=return 8 float sum = 0: 9 for (unsigned int i = 0; i < dim; ++i) { 10 sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]); 11 12 13 return sum; ``` Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size! **Note 2:** We use a special pragma if we need to use parameters Note 3: s_axilite can be replaced by axis for axi-stream Question: How would we implement this function in hardware? **Question:** How would we implement this function in hardware? **Idea:** Subtract \rightarrow multiply \rightarrow sum \rightarrow update sum: **Question:** How would we implement this function in hardware? **Idea:** Subtract \rightarrow multiply \rightarrow sum \rightarrow update sum: Question: How would we implement this function in hardware? **Idea:** Subtract \rightarrow multiply \rightarrow sum \rightarrow update sum: **Analysis:** Signal delay $\Delta=4$, needs dim clocks Pragma: This is the HLS default ## High Level Synthesis: Pipelining **Observation:** Only 1 functional unit active at a time. Pipeline execution to utilize every functional unit #### High Level Synthesis: Pipelining **Observation:** Only 1 functional unit active at a time. Pipeline execution to utilize every functional unit DeepLearning on FPGAs ## High Level Synthesis: Pipelining **Observation:** Only 1 functional unit active at a time. Pipeline execution to utilize every functional unit **Analysis:** Signal delay $\Delta=1$, dim+4 clocks needed Pragma: #pragma HLS PIPELINE ### High Level Synthesis: Loop unrolling **Observation:** We can compute the subtraction and multiplication in complete parallel ### High Level Synthesis: Loop unrolling **Observation:** We can compute the subtraction and multiplication ### High Level Synthesis: Loop unrolling **Observation:** We can compute the subtraction and multiplication **Analysis:** Signal delay $\Delta=4$, 2 clocks needed Pragma: #pragma HLS UNROLL Question: So what's best to use? Pipeline? Loop unrolling? **Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** - **Loop unrolling:** Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure. - **Pipelining:** Good compromise between parallelism and small structure with high clock frequency. **Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** - **Loop unrolling:** Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure. - Pipelining: Good compromise between parallelism and small structure with high clock frequency. Note 1: Only "perfect" loops can be unrolled! ⇒ If a loop contains branches (if-clause), we cannot unroll it **Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** - **Loop unrolling:** Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure. - **Pipelining:** Good compromise between parallelism and small structure with high clock frequency. Note 1: Only "perfect" loops can be unrolled! \Rightarrow If a loop contains branches (if-clause), we cannot unroll it Note 2: Sometimes even pipelining might fail ⇒ Nested loops need to be unrolled **Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** - Loop unrolling: Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure. - Pipelining: Good compromise between parallelism and small structure with high clock frequency. Note 1: Only "perfect" loops can be unrolled! \Rightarrow If a loop contains branches (if-clause), we cannot unroll it Note 2: Sometimes even pipelining might fail \Rightarrow Nested loops need to be unrolled A note on memory: HLS will try to use Block-RAM when possible (\rightarrow use the static keyword whenever possible). Otherwise it uses CLB for memory. It will never access DDR RAM #### FPGA: Custom data ranges **Fact 1:** FPGAs offer arbitrary data ranges and data types **Rule-of-thump:** The less bits, the better for synthesis #### FPGA: Custom data ranges **Fact 1:** FPGAs offer arbitrary data ranges and data types **Rule-of-thump:** The less bits, the better for synthesis Fact: For computing, integer operations are the easiest and fastest But: Sometimes floating point is needed Fact 2: IEEE-754 floating point operations are slow compared to integer operations (Mantissa needs normalization) #### FPGA: Custom data ranges **Fact 1:** FPGAs offer arbitrary data ranges and data types **Rule-of-thump:** The less bits, the better for synthesis Fact: For computing, integer operations are the easiest and fastest But: Sometimes floating point is needed Fact 2: IEEE-754 floating point operations are slow compared to integer operations (Mantissa needs normalization) **Thus:** Use a Fixed point number N=A.B with fixed sized integers A and B \Rightarrow Fast floating point operations with reduced accuracy possible **Tip:** Start to think in terms of bits with integer operations ## Deep Learning on FPGAs Question: So how do we implement Deep Learning on FPGAs? ## Deep Learning on FPGAs **Question:** So how do we implement Deep Learning on FPGAs? **Some ideas from a hardware perspective:** - Reduce communication: Reduce communication between ARM and FPGA to a minimum. Usually, this is your bottleneck. - **Use on-chip memory:** If your neural networks are small enough, store weights in on-chip memory. - Use compile-time constants: The more the compiler knows at compile time, the better. Use fixed values and upper bounds for loops as often as possible. - **Use parallelism:** Unroll small structures / parts of your code, e.g. multiplying weights with input values ## Deep Learning on FPGAs (2) Question: So how do we implement Deep Learning on FPGAs? ## Deep Learning on FPGAs (2) **Question:** So how do we implement Deep Learning on FPGAs? **Some ideas from a the ML perspective:** - Reduce data range: Use fixed point whenever possible: Fixed floating point can be implemented efficiently with integer operations. Maybe even reduce the data range. - Perform batch SGD: Load a batch of data points on FPGA and perform gradient with on-chip-memory batches. - **Change activation function:** Do we really need sigmoid in multiple layers? Maybe one sigmoid layer is enough? - Unsynchronized dropout: Dropout is computed by each neuron individually. ## Deep Learning on FPGAs (2) **Question:** So how do we implement Deep Learning on FPGAs? **Some ideas from a the ML perspective:** - Reduce data range: Use fixed point whenever possible: Fixed floating point can be implemented efficiently with integer operations. Maybe even reduce the data range. - **Perform batch SGD:** Load a batch of data points on FPGA and perform gradient with on-chip-memory batches. - **Change activation function:** Do we really need sigmoid in multiple layers? Maybe one sigmoid layer is enough? - Unsynchronized dropout: Dropout is computed by each neuron individually. Note: Changes must be evaluated with respect to accuracy! #### Summary #### Important concepts: - Moore's law will expire around 2020 - FPGAs are programmable hardware circuits - FPGAs work well with parallelism and custom data ranges - Use a combination of CPU and FPGA - HLS helps us to program FPGAs in a timely matter - Loop unrolling / Pipelining are two possible optimizations - Reduce communication between CPU and FPGA - Use fixed floating point operations if possible