

# DeepLearning on FPGAs Introduction to FPGAs

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

November 17, 2016



Observation 1: Even smaller images need a lot of neurons

Our approach: Discrete convolution

$$k_c = \sum_{i=1}^{r} w_i \cdot c_i = \vec{w} * \vec{c}$$

| 170 | 20  | 153 | 11  |
|-----|-----|-----|-----|
| 122 | 39  | 70  | 200 |
| 180 | 80  | 10  | 120 |
| 20  | 120 | 45  | 140 |

\*  $\begin{vmatrix} 1 & -0 \\ -0.5 & 1 \end{vmatrix}$ 

image

kernel / weights / filter



Observation 1: Even smaller images need a lot of neurons

Our approach: Discrete convolution

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

| 170 | 20  | 153 | 11  |
|-----|-----|-----|-----|
| 122 | 39  | 70  | 200 |
| 180 | 80  | 10  | 120 |
| 20  | 120 | 45  | 140 |

image



$$180 \cdot 1 - 80 \cdot 0.5 - 20 \cdot 0.5 + 120 \cdot 1 = 250$$

kernel / weights / filter



Observation 1: Even smaller images need a lot of neurons

Our approach: Discrete convolution

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

| 170 | 20  | 153 | 11  |
|-----|-----|-----|-----|
| 122 | 39  | 70  | 200 |
| 180 | 80  | 10  | 120 |
| 20  | 120 | 45  | 140 |

 $* \begin{array}{c|cccc} & 1 & -0.5 \\ \hline -0.5 & 1 & & = & \\ \hline & 250 & 67 & & \\ \hline \end{array}$ 

 $10 \cdot 1 - 120 \cdot 0.5 - 45 \cdot 0.5 + 140 \cdot 1 = 67$ 

kernel / weights / filter

image

DeepLearning on FPGAs



Observation 1: Even smaller images need a lot of neurons

Our approach: Discrete convolution

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

| 170 | 20  | 153 | 11  |
|-----|-----|-----|-----|
| 122 | 39  | 70  | 200 |
| 180 | 80  | 10  | 120 |
| 20  | 120 | 45  | 140 |

$$170 \cdot 1 - 20 \cdot 0.5 - 122 \cdot 0.5 + 39 \cdot 1 = 138$$

kernel / weights / filter



Observation 1: Even smaller images need a lot of neurons

Our approach: Discrete convolution

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

| 170 | 20  | 153 | 11  |
|-----|-----|-----|-----|
| 122 | 39  | 70  | 200 |
| 180 | 80  | 10  | 120 |
| 20  | 120 | 45  | 140 |



$$153 \cdot 1 - 11 \cdot 0.5 - 70 \cdot 0.5 + 200 \cdot 1 = 255$$

kernel / weights / filter



# Recap: CNNs and weight sharing



#### Mathematically:



# Recap: Backpropagation for CNNs with sigmoid activation

## **Gradient step:**

$$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot 180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$

#### Recursion:

$$\delta^{(l+1)} = \delta^{(l)} * rot180(w^{(l+1)}) \cdot f_{i,j}^{(l)} (1 - f_{i,j})^l$$



# Recap: Backpropagation for CNNs with sigmoid activation

# **Gradient step:**

$$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_{j}^{(l)} & = & b_{j}^{(l)} - \alpha \cdot \delta_{j}^{(l)} \end{array}$$

#### Recursion:





Hardware: Current trends

**Moore's law:** The number of transistors on a chip doubles every 12-24 month  $\Rightarrow$  We can double the speed roughly every 2 years

<sup>&</sup>lt;sup>1</sup>Intel predicts 5nm transistors to be available around 2020.



# Hardware: Current trends

**Moore's law:** The number of transistors on a chip doubles every 12-24 month  $\Rightarrow$  We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11 - 16nm transistors<sup>1</sup> Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors

<sup>&</sup>lt;sup>1</sup>Intel predicts 5nm transistors to be available around 2020.



# Hardware: Current trends

**Moore's law:** The number of transistors on a chip doubles every 12-24 month  $\Rightarrow$  We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11-16nm transistors  $^1$  Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors

### How to deal with this problem

- Multi/Many core systems
- Add specialized components in CPU
- Use dedicated hardware for specific tasks

<sup>&</sup>lt;sup>1</sup>Intel predicts 5nm transistors to be available around 2020.



# Hardware Overview





#### Fact:

speed: fastest

energy:  $\sim \mu W$ 

application specific

costs: expensive

#### Fact:

speed: fast

energy:  $\sim$  W

general purpose

costs: cheap



# Hardware Overview



### Fact:

- speed: fastest
- energy:  $\sim \mu W$
- application specific
- costs: expensive

### Hope:

- speed: faster
- energy: ~ mW
- general + specific
- costs: cheap

#### Fact:

- speed: fast
  - energy:  $\sim$  W
- general purpose
- costs: cheap



# FPGA: How does it work?



- chip layout 2D grid
- configurable connections between blocks
- configurable logic blocks (CL)
- input/output blocks (IO)
- hard-wired on boards with standard interface
- programmed and flashed with external PC

DeepLearning on FPGAs 7



# FPGA: Signal Routing





# FPGA: Configurable Logic Block





# FPGAs: Strengths

- Inherent parallelism: We can perform computations in real parallel on any level of granularity.
- Large on-chip memory: Modern CPUs offer Caches in the range of  $\sim 8 \text{Mb}$ . Today's largest FPGA chips offer on-chip memory in the range of  $\sim 64 \text{ Mb}$
- **Arbitrary word sizes:** Modern CPUs and GPUs are built and optimized for specific word sizes, e.g. 64 bit. In FPGAs, the word size is arbitrary and can fit the problem given.
- Large IO capabilities: Modern CPUs and GPUs have to use PCIe and direct memory access (DMA) for data IO. FPGAs are free to use what's necessary.



## FPGAs: Weaknesses

- Slow clock rate: CPUs / GPUs are clocked with  $\sim 2-3$  GHz, FPGAs with  $\sim 200$  Mhz
- **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware
- No optimizations: CPUs / GPUs offer a well developed tool-chain support. Additionally, modern CPUs/GPUs often offer specialized hardware instructions.

**Note 1:** High-end FPGAs offer clock rates around 800 Mhz **Note 2:** High-end FPGAs also offer specialized hardware blocks, e.g. digital processing units or floating point units

**Note 3:** Tool support for FPGAs are growing. The so-called 3rd wave of tools finally enables FPGAs for the mass-market









## Hardware Description Languages (HDL):

- describe hardware on transistor and gate level
- modelling real concurrency
- modelling signal flow & timings

- low level bit operations
- high level operations like sums, products, ...
- verified using simulator





### Hardware Description Languages (HDL):

- describe hardware on transistor and gate level
- modelling real concurrency
- modelling signal flow & timings

- low level bit operations
- high level operations like sums, products, ...
- verified using simulator

**Note:** HDLs are used by hardware designers. HDLs are extremely low-level, but allow ultimate control over your design

**But:** HDL designs need time and care  $\rightarrow$  We focus on HLS









Basic idea: Automatically translate high level code into HDL

- Automate tedious work
- Compile code specifically for target device
- Lets you explore design space effectively

- Output should be reviewed
- Code must be changed for HLS tool
- Only works on subset of high level language





Basic idea: Automatically translate high level code into HDL

- Automate tedious work
- Compile code specifically for target device
- Lets you explore design space effectively

- Output should be reviewed
- Code must be changed for HLS tool
- Only works on subset of high level language

**Note:** HLS lets you describe your hardware in C-Code and the HLS tool will try to guess what you code meant and put that on the FPGA (more later)









Synthesis: Calculate CL configurations

- → **So far:** HDL contains abstractions, e.g. summation
- → **Thus:** Compile these to a gate description, e.g. half/full-adder
- $\Rightarrow$  The netlist contains the functionality of all units of the design





### Synthesis: Calculate CL configurations

- → **So far:** HDL contains abstractions, e.g. summation
- $\rightarrow$  **Thus:** Compile these to a gate description, e.g. half/full-adder
- $\Rightarrow$  The netlist contains the functionality of all units of the design

### Place & Route: Calculate signal routing

- →**So far:** We have netlist with all functional units of our design
- $\Rightarrow$  Calculate, which CL implements which functionality and how they are connected









**Important:** Synthesis and place & route may fail!





**Important:** Synthesis and place & route may fail!

**Observation 1:** HDL and HLS allow us to express things, which are not existent in hardware, e.g. files

**Observation 2:** Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock.





**Important:** Synthesis and place & route may fail!

**Observation 1:** HDL and HLS allow us to express things, which are not existent in hardware, e.g. files

**Observation 2:** Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock.

**Note 1:** We aim for a clock around 125 - 150 Mhz.

**Note 2:** Synthesis and place & route perform a lot of optimizations. Thus this phase is slow (minutes - hours)









**Observation 1:** We can use IP from other programmers<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>E.g. http://opencores.com/





**Observation 1:** We can use IP from other programmers<sup>1</sup>

### **Observation 2:** There are so-called soft processors

- Small processors with own ISA
- Mostly configurable in terms of Caches, Pipelining, floating point operation etc.
- Different optimizations for energy or throughput available
- Usually programmed in C-like language with own compiler

<sup>&</sup>lt;sup>1</sup>E.g. http://opencores.com/



# Deep Learning on FPGAs

# How do we put Deep Learning on FPGAs?



Deep Learning: Some considerations

Why FPGAs for Deep Learning?

Fact: DeepLearning networks still have a lot of parameters

Additional: Many SGD steps are required to get reasonable results



## Deep Learning: Some considerations

#### Why FPGAs for Deep Learning?

**Fact:** DeepLearning networks still have a lot of parameters **Additional:** Many SGD steps are required to get reasonable results

- We need a lot of data
- We need to learn a lot of parameters
- We need to perform many SGD steps until convergence



## Deep Learning: Some considerations

#### Why FPGAs for Deep Learning?

**Fact:** DeepLearning networks still have a lot of parameters **Additional:** Many SGD steps are required to get reasonable results

- We need a lot of data
- We need to learn a lot of parameters
- We need to perform many SGD steps until convergence

**Additional:** We want to use Deep Learning in embedded context's, such as car, robots, etc.

 $\Rightarrow$  Fast and energy efficient hardware and fast implementations required!



## Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware

DeepLearning on FPGAs



#### Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware

- **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available.
- From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular.



#### Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware

- **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available.
- From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular.
- Upcoming: More specialized hardware is being used
  - Januar 2016: Nvidias Drive PX2 for autonomous cars
  - June 2016: Googles Tensor Processing Unit (TPU)

**Bottom-Line:** Hardware-specific implementations play a great part in DeepLearning!



#### Some facts about hardware:

- CPUs are optimized towards latency
  - $\rightarrow$  Execute a single operation as fast as possible
- GPUs are optimized towards throughput
  - $\rightarrow$  Process as much data a as fast as possible
- FPGAs are optimized towards?



#### Some facts about hardware:

- CPUs are optimized towards latency
  - → Execute a single operation as fast as possible
- GPUs are optimized towards throughput
  - → Process as much data a as fast as possible
- FPGAs are optimized towards?

Fact: CPU and GPU designers are smart people!

 $\Rightarrow$  It is though to beat a CPU / GPU only with an FPGA



#### Some facts about hardware:

- CPUs are optimized towards latency
  - → Execute a single operation as fast as possible
- GPUs are optimized towards throughput
  - → Process as much data a as fast as possible
- FPGAs are optimized towards?

**Fact:** CPU and GPU designers are smart people! ⇒ It is though to beat a CPU / GPU only with an FPGA

**Rule-of-thump:** CPU is good for control flow, FPGAs / GPUs are

good for number crunching

Thus: Combine FPGAs with CPUs



**Either:** As PCle cards in desktop / server systems

- Needs a custom written driver for PCIe
- Usually needs special licenses on FPGA chip or own PCle protocol implementation
- Requires full desktop system

Or: fully integrated on development boards

- On-board connections are known, thus 1 driver needed
- Does not require full desktop system ⇒ Less energy



**Either:** As PCle cards in desktop / server systems

- Needs a custom written driver for PCIe
- Usually needs special licenses on FPGA chip or own PCle protocol implementation
- Requires full desktop system

Or: fully integrated on development boards

- On-board connections are known, thus 1 driver needed
- Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors



#### Xilinx Zedboard

Board: Xilinx ZedBoard

■ **ARM Cortex-A9** Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

■ **Memory:** 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

**LUT:** 53200

■ **CLB**: 83000

■ Block-Ram: 4.9 Mb

■ **DSP:** 220



#### Xilinx Zedboard

**Board:** Xilinx ZedBoard

ARM Cortex-A9 Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

■ **Memory:** 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

**LUT:** 53200

**CLB:** 83000

■ Block-Ram: 4.9 Mb

■ **DSP**: 220

**Usually:** CPUs also do not offer a runtime system

**Thus:** Run full blown Linux on CPU + develop software for CPU

+ specify hardware accelerator for FPGA

 $\Rightarrow$  Easy software development for "glue" code + fast energy and efficient computations

DeepLearning on FPGAs



#### Xilinx Zedboard

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

■ Memory: 512 Kb Cache

**FPGA:** Xilinx Artix-7 Z-7020

**LUT:** 53200

**CLB:** 83000

■ Block-Ram: 4.9 Mb

■ **DSP**: 220

**Usually:** CPUs also do not offer a runtime system

**Thus:** Run full blown Linux on CPU + develop software for CPU

+ specify hardware accelerator for FPGA

 $\Rightarrow$  Easy software development for "glue" code + fast energy and efficient computations

Question: How do we control the FPGA hardware accelerator?



# Software driven System on a Chip development (SDSoC)

Note: FPGA interface might change

Thus: Linux kernel driver needed for every new hardware block

 $\rightarrow$  Writing Linux kernel drivers is a though task



# Software driven System on a Chip development (SDSoC)

Note: FPGA interface might change

Thus: Linux kernel driver needed for every new hardware block

 $\rightarrow$  Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

- Standard eclipse GUI for C/C++ programming
- Standard gcc ARM compiler for C/C++ code
- HLS automatically compiles C/C++ code to HDL
- SDSoC generates a kernel driver based on the HLS' output



# Software driven System on a Chip development (SDSoC)

Note: FPGA interface might change

Thus: Linux kernel driver needed for every new hardware block

 $\rightarrow$  Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

- Standard eclipse GUI for C/C++ programming
- Standard gcc ARM compiler for C/C++ code
- HLS automatically compiles C/C++ code to HDL
- SDSoC generates a kernel driver based on the HLS' output

**Thus:** SDSoC compiles C/C++ code, generated HDL code from C/C++ and generated Linux kernel drivers

In the end: We get a bootable Linux image with integrated

hardware accelerator



#### **AXI-Interface**

Fact 1: The FPGA can support any hardware interface we desire

Fact 2: The ARMs hardware interface is fixed

 $\Rightarrow$  The ARM and the FPGA are connected using the AXI interface



#### **AXI-Interface**

**Fact 1:** The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed

 $\Rightarrow$  The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants:

- AXI-Lite: easy, simple communication
- AXI-Stream: high throughput in streaming settings
- AXI: high speed, low latency



#### **AXI-Interface**

**Fact 1:** The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed

 $\Rightarrow$  The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants:

- AXI-Lite: easy, simple communication
- AXI-Stream: high throughput in streaming settings
- AXI: high speed, low latency

**Note:** HLS generates the desired interface for us



#### High Level Synthesis: Interface generation

```
\#define PRAGMA_SUB(x) _Pragma (\#x)
    #define DO_PRAGMA(x) PRAGMA_SUB(x)
    float diff(float const pX1[dim], float const pX2[dim]) const {
    DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim);
    DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_):
6
    #pragma HLS INTERFACE s_axilite port=return
8
            float sum = 0:
9
            for (unsigned int i = 0; i < dim; ++i) {
10
                sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]);
11
12
13
            return sum;
```

Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const \*pX)", but HLS explicitly needs to know the size!



#### High Level Synthesis: Interface generation

```
\#define PRAGMA_SUB(x) _Pragma (\#x)
    #define DO_PRAGMA(x) PRAGMA_SUB(x)
    float diff(float const pX1[dim], float const pX2[dim]) const {
    DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim);
    DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_):
6
    #pragma HLS INTERFACE s_axilite port=return
8
            float sum = 0:
9
            for (unsigned int i = 0; i < dim; ++i) {
10
                sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]);
11
12
13
            return sum;
```

Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const \*pX)", but HLS explicitly needs to know the size!

Note 2: We use a special pragma if we need to use parameters



#### High Level Synthesis: Interface generation

```
\#define PRAGMA_SUB(x) _Pragma (\#x)
    #define DO_PRAGMA(x) PRAGMA_SUB(x)
    float diff(float const pX1[dim], float const pX2[dim]) const {
    DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim);
    DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_):
6
    #pragma HLS INTERFACE s_axilite port=return
8
            float sum = 0:
9
            for (unsigned int i = 0; i < dim; ++i) {
10
                sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]);
11
12
13
            return sum;
```

Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const \*pX)", but HLS explicitly needs to know the size!

**Note 2:** We use a special pragma if we need to use parameters

Note 3: s\_axilite can be replaced by axis for axi-stream



Question: How would we implement this function in hardware?



**Question:** How would we implement this function in hardware?

**Idea:** Subtract  $\rightarrow$  multiply  $\rightarrow$  sum  $\rightarrow$  update sum:



**Question:** How would we implement this function in hardware?

**Idea:** Subtract  $\rightarrow$  multiply  $\rightarrow$  sum  $\rightarrow$  update sum:





Question: How would we implement this function in hardware?

**Idea:** Subtract  $\rightarrow$  multiply  $\rightarrow$  sum  $\rightarrow$  update sum:



**Analysis:** Signal delay  $\Delta=4$ , needs dim clocks

Pragma: This is the HLS default



## High Level Synthesis: Pipelining

**Observation:** Only 1 functional unit active at a time. Pipeline execution to utilize every functional unit



#### High Level Synthesis: Pipelining

**Observation:** Only 1 functional unit active at a time. Pipeline execution to utilize every functional unit



DeepLearning on FPGAs



## High Level Synthesis: Pipelining

**Observation:** Only 1 functional unit active at a time. Pipeline execution to utilize every functional unit



**Analysis:** Signal delay  $\Delta=1$ , dim+4 clocks needed

Pragma: #pragma HLS PIPELINE



### High Level Synthesis: Loop unrolling

**Observation:** We can compute the subtraction and multiplication in complete parallel



### High Level Synthesis: Loop unrolling

**Observation:** We can compute the subtraction and multiplication





### High Level Synthesis: Loop unrolling

**Observation:** We can compute the subtraction and multiplication



**Analysis:** Signal delay  $\Delta=4$ , 2 clocks needed

Pragma: #pragma HLS UNROLL



Question: So what's best to use? Pipeline? Loop unrolling?



**Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** 

- **Loop unrolling:** Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure.
- **Pipelining:** Good compromise between parallelism and small structure with high clock frequency.



**Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** 

- **Loop unrolling:** Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure.
- Pipelining: Good compromise between parallelism and small structure with high clock frequency.

Note 1: Only "perfect" loops can be unrolled!

⇒ If a loop contains branches (if-clause), we cannot unroll it



**Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** 

- **Loop unrolling:** Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure.
- **Pipelining:** Good compromise between parallelism and small structure with high clock frequency.

Note 1: Only "perfect" loops can be unrolled!

 $\Rightarrow$  If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail

⇒ Nested loops need to be unrolled



**Question:** So what's best to use? Pipeline? Loop unrolling? **Depends on problem, but usually:** 

- Loop unrolling: Needs a lot of space, but offers high parallelism. Clock frequency suffers from large structure.
- Pipelining: Good compromise between parallelism and small structure with high clock frequency.

Note 1: Only "perfect" loops can be unrolled!

 $\Rightarrow$  If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail

 $\Rightarrow$  Nested loops need to be unrolled

A note on memory: HLS will try to use Block-RAM when possible ( $\rightarrow$  use the static keyword whenever possible). Otherwise it uses CLB for memory. It will never access DDR RAM



#### FPGA: Custom data ranges

**Fact 1:** FPGAs offer arbitrary data ranges and data types **Rule-of-thump:** The less bits, the better for synthesis



#### FPGA: Custom data ranges

**Fact 1:** FPGAs offer arbitrary data ranges and data types **Rule-of-thump:** The less bits, the better for synthesis

Fact: For computing, integer operations are the easiest and fastest

But: Sometimes floating point is needed

Fact 2: IEEE-754 floating point operations are slow compared to

integer operations (Mantissa needs normalization)



#### FPGA: Custom data ranges

**Fact 1:** FPGAs offer arbitrary data ranges and data types **Rule-of-thump:** The less bits, the better for synthesis

Fact: For computing, integer operations are the easiest and fastest

But: Sometimes floating point is needed

Fact 2: IEEE-754 floating point operations are slow compared to

integer operations (Mantissa needs normalization)

**Thus:** Use a Fixed point number N=A.B with fixed sized integers A and B

 $\Rightarrow$  Fast floating point operations with reduced accuracy possible

**Tip:** Start to think in terms of bits with integer operations



## Deep Learning on FPGAs

Question: So how do we implement Deep Learning on FPGAs?



## Deep Learning on FPGAs

**Question:** So how do we implement Deep Learning on FPGAs? **Some ideas from a hardware perspective:** 

- Reduce communication: Reduce communication between ARM and FPGA to a minimum. Usually, this is your bottleneck.
- **Use on-chip memory:** If your neural networks are small enough, store weights in on-chip memory.
- Use compile-time constants: The more the compiler knows at compile time, the better. Use fixed values and upper bounds for loops as often as possible.
- **Use parallelism:** Unroll small structures / parts of your code, e.g. multiplying weights with input values



## Deep Learning on FPGAs (2)

Question: So how do we implement Deep Learning on FPGAs?



## Deep Learning on FPGAs (2)

**Question:** So how do we implement Deep Learning on FPGAs? **Some ideas from a the ML perspective:** 

- Reduce data range: Use fixed point whenever possible: Fixed floating point can be implemented efficiently with integer operations. Maybe even reduce the data range.
- Perform batch SGD: Load a batch of data points on FPGA and perform gradient with on-chip-memory batches.
- **Change activation function:** Do we really need sigmoid in multiple layers? Maybe one sigmoid layer is enough?
- Unsynchronized dropout: Dropout is computed by each neuron individually.



## Deep Learning on FPGAs (2)

**Question:** So how do we implement Deep Learning on FPGAs? **Some ideas from a the ML perspective:** 

- Reduce data range: Use fixed point whenever possible: Fixed floating point can be implemented efficiently with integer operations. Maybe even reduce the data range.
- **Perform batch SGD:** Load a batch of data points on FPGA and perform gradient with on-chip-memory batches.
- **Change activation function:** Do we really need sigmoid in multiple layers? Maybe one sigmoid layer is enough?
- Unsynchronized dropout: Dropout is computed by each neuron individually.

Note: Changes must be evaluated with respect to accuracy!



#### Summary

#### Important concepts:

- Moore's law will expire around 2020
- FPGAs are programmable hardware circuits
- FPGAs work well with parallelism and custom data ranges
- Use a combination of CPU and FPGA
- HLS helps us to program FPGAs in a timely matter
- Loop unrolling / Pipelining are two possible optimizations
- Reduce communication between CPU and FPGA
- Use fixed floating point operations if possible