
DeepLearning on FPGAs
Introduction to FPGAs

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

November 17, 2016

1

Recap: Convolution

Observation 1: Even smaller images need a lot of neurons
Our approach: Discrete convolution

kc =

r∑
i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2

Recap: Convolution

Observation 1: Even smaller images need a lot of neurons
Our approach: Discrete convolution

kc =

r∑
i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 250

10 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250

67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2

Recap: Convolution

Observation 1: Even smaller images need a lot of neurons
Our approach: Discrete convolution

kc =

r∑
i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 250

10 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67

170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2

Recap: Convolution

Observation 1: Even smaller images need a lot of neurons
Our approach: Discrete convolution

kc =

r∑
i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67

170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138

153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138

255

image kernel / weights / filter result
DeepLearning on FPGAs 2

Recap: Convolution

Observation 1: Even smaller images need a lot of neurons
Our approach: Discrete convolution

kc =

r∑
i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138

153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2

Recap: CNNs and weight sharing

f00 f01 f02

f10 f11 f12

f20 f21 f22
∗ w00 w01

w10 w11

=
w00f00 + w01f01
+w10f10 +w11f11

w00f01 + w01f02
+w10f11 +w11f12

w00f10 + w01f11
+w10f20 +w11f21

w00f11 + w01f12
+w10f21 +w11f22

input ~f weights ~w output ~y

Mathematically:

y
(l)
i,j =

M(l)∑
i′=0

M(l)∑
j′=0

w
(l)
i,j · f

(l−1)
i+i′,j+j′ + b

(l)
i,j = w(l) ∗ f (l−1) + b(l)

f
(l)
i,j = σ(y

(l)
i,j)

M (l) ×M (l) bias matrix!

DeepLearning on FPGAs 3

Recap: Backpropagation for CNNs with sigmoid
activation
Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ(l) ∗ rot180(f)(l−1)f

(l−1)
i,j

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ(l+1) = δ(l) ∗ rot180(w(l+1)) · f (l)i,j (1− fi,j)l

rot180
w00 w01

w10 w11

=

w11 w10

w01 w00

DeepLearning on FPGAs 4

Recap: Backpropagation for CNNs with sigmoid
activation
Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ(l) ∗ rot180(f)(l−1)f

(l−1)
i,j

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ(l+1) = δ(l) ∗ rot180(w(l+1)) · f (l)i,j (1− fi,j)l

rot180
w00 w01

w10 w11

=

w11 w10

w01 w00

DeepLearning on FPGAs 4

Hardware: Current trends

Moore’s law: The number of transistors on a chip doubles every
12− 24 month ⇒ We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11− 16nm transistors1

Side-Note: A 4nm transistor can be built from only 7 atoms!
Fact 2: The smaller transistors get, the more quantum effects are
happening. Moore’s law is predicted to expire with 5nm transistors

How to deal with this problem

Multi/Many core systems

Add specialized components in CPU

Use dedicated hardware for specific tasks

1Intel predicts 5nm transistors to be available around 2020.
DeepLearning on FPGAs 5

Hardware: Current trends

Moore’s law: The number of transistors on a chip doubles every
12− 24 month ⇒ We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11− 16nm transistors1

Side-Note: A 4nm transistor can be built from only 7 atoms!
Fact 2: The smaller transistors get, the more quantum effects are
happening. Moore’s law is predicted to expire with 5nm transistors

How to deal with this problem

Multi/Many core systems

Add specialized components in CPU

Use dedicated hardware for specific tasks

1Intel predicts 5nm transistors to be available around 2020.
DeepLearning on FPGAs 5

Hardware: Current trends

Moore’s law: The number of transistors on a chip doubles every
12− 24 month ⇒ We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11− 16nm transistors1

Side-Note: A 4nm transistor can be built from only 7 atoms!
Fact 2: The smaller transistors get, the more quantum effects are
happening. Moore’s law is predicted to expire with 5nm transistors

How to deal with this problem

Multi/Many core systems

Add specialized components in CPU

Use dedicated hardware for specific tasks

1Intel predicts 5nm transistors to be available around 2020.
DeepLearning on FPGAs 5

Hardware Overview

ASIC

FPGA

GPGPU / CPU

Fact:

speed: fastest

energy: ∼ µW

application specific

costs: expensive

Hope:

speed: faster

energy: ∼ mW

general + specific

costs: cheap

Fact:

speed: fast

energy: ∼ W

general purpose

costs: cheap

DeepLearning on FPGAs 6

Hardware Overview

ASIC FPGA GPGPU / CPU

Fact:

speed: fastest

energy: ∼ µW

application specific

costs: expensive

Hope:

speed: faster

energy: ∼ mW

general + specific

costs: cheap

Fact:

speed: fast

energy: ∼ W

general purpose

costs: cheap

DeepLearning on FPGAs 6

FPGA: How does it work?

IO IO IO IO IO

IO IO IO IO IO

IO

IO

IO

IO

IO

IO

CL CL CL

CL CL CL

CL CL CL

chip layout 2D grid

configurable connections
between blocks

configurable logic blocks (CL)

input/output blocks (IO)

hard-wired on boards with
standard interface

programmed and flashed with
external PC

DeepLearning on FPGAs 7

FPGA: Signal Routing

IO IO IO IO IO

IO IO IO IO IO

IO

IO

IO

IO

IO

IO

CL CL CL

CL CL CL

CL CL CL

SRAM

DeepLearning on FPGAs 8

FPGA: Configurable Logic Block

IO IO IO IO IO

IO IO IO IO IO

IO

IO

IO

IO

IO

IO

CL CL CL

CL CL CL

CL CL CL

4LUT

SRAM

i1
i2
i3
i4

c

D

C1

implements
{0, 1}4 → {0, 1}

function

configures usage

stores 1 bit

DeepLearning on FPGAs 9

FPGAs: Strengths

Inherent parallelism: We can perform computations in real
parallel on any level of granularity.

Large on-chip memory: Modern CPUs offer Caches in the
range of ∼ 8Mb. Today’s largest FPGA chips offer on-chip
memory in the range of ∼ 64 Mb

Arbitrary word sizes: Modern CPUs and GPUs are built and
optimized for specific word sizes, e.g. 64 bit. In FPGAs, the
word size is arbitrary and can fit the problem given.

Large IO capabilities: Modern CPUs and GPUs have to use
PCIe and direct memory access (DMA) for data IO. FPGAs
are free to use what’s necessary.

DeepLearning on FPGAs 10

FPGAs: Weaknesses

Slow clock rate: CPUs / GPUs are clocked with ∼ 2− 3
GHz, FPGAs with ∼ 200 Mhz

No abstractions: CPUs / GPUs offer a stack and a heap
with data addressing etc. FPGAs just offer raw hardware

No optimizations: CPUs / GPUs offer a well developed
tool-chain support. Additionally, modern CPUs/GPUs often
offer specialized hardware instructions.

Note 1: High-end FPGAs offer clock rates around 800 Mhz
Note 2: High-end FPGAs also offer specialized hardware blocks,
e.g. digital processing units or floating point units
Note 3: Tool support for FPGAs are growing. The so-called 3rd
wave of tools finally enables FPGAs for the mass-market

DeepLearning on FPGAs 11

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Hardware Description Languages (HDL):

describe hardware on
transistor and gate level
modelling real concurrency
modelling signal flow &
timings

low level bit operations

high level operations like
sums, products, ...

verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely
low-level, but allow ultimate control over your design
But: HDL designs need time and care → We focus on HLS

DeepLearning on FPGAs 12

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Hardware Description Languages (HDL):

describe hardware on
transistor and gate level
modelling real concurrency
modelling signal flow &
timings

low level bit operations

high level operations like
sums, products, ...

verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely
low-level, but allow ultimate control over your design
But: HDL designs need time and care → We focus on HLS

DeepLearning on FPGAs 12

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Hardware Description Languages (HDL):

describe hardware on
transistor and gate level
modelling real concurrency
modelling signal flow &
timings

low level bit operations

high level operations like
sums, products, ...

verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely
low-level, but allow ultimate control over your design
But: HDL designs need time and care → We focus on HLS

DeepLearning on FPGAs 12

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Basic idea: Automatically translate high level code into HDL

Automate tedious work

Compile code specifically
for target device

Lets you explore design
space effectively

Output should be reviewed

Code must be changed for
HLS tool

Only works on subset of
high level language

Note: HLS lets you describe your hardware in C-Code and the
HLS tool will try to guess what you code meant and put that on
the FPGA (more later)

DeepLearning on FPGAs 13

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Basic idea: Automatically translate high level code into HDL

Automate tedious work

Compile code specifically
for target device

Lets you explore design
space effectively

Output should be reviewed

Code must be changed for
HLS tool

Only works on subset of
high level language

Note: HLS lets you describe your hardware in C-Code and the
HLS tool will try to guess what you code meant and put that on
the FPGA (more later)

DeepLearning on FPGAs 13

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Basic idea: Automatically translate high level code into HDL

Automate tedious work

Compile code specifically
for target device

Lets you explore design
space effectively

Output should be reviewed

Code must be changed for
HLS tool

Only works on subset of
high level language

Note: HLS lets you describe your hardware in C-Code and the
HLS tool will try to guess what you code meant and put that on
the FPGA (more later)

DeepLearning on FPGAs 13

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Synthesis: Calculate CL configurations
→ So far: HDL contains abstractions, e.g. summation
→ Thus: Compile these to a gate description, e.g. half/full-adder
⇒ The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing
→So far: We have netlist with all functional units of our design
⇒ Calculate, which CL implements which functionality and how
they are connected

DeepLearning on FPGAs 14

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Synthesis: Calculate CL configurations
→ So far: HDL contains abstractions, e.g. summation
→ Thus: Compile these to a gate description, e.g. half/full-adder
⇒ The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing
→So far: We have netlist with all functional units of our design
⇒ Calculate, which CL implements which functionality and how
they are connected

DeepLearning on FPGAs 14

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Synthesis: Calculate CL configurations
→ So far: HDL contains abstractions, e.g. summation
→ Thus: Compile these to a gate description, e.g. half/full-adder
⇒ The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing
→So far: We have netlist with all functional units of our design
⇒ Calculate, which CL implements which functionality and how
they are connected

DeepLearning on FPGAs 14

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 15

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 15

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 15

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 15

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Observation 1: We can use IP from other programmers1

Observation 2: There are so-called soft processors

Small processors with own ISA

Mostly configurable in terms of Caches, Pipelining, floating
point operation etc.

Different optimizations for energy or throughput available

Usually programmed in C-like language with own compiler

DeepLearning on FPGAs 16

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Observation 1: We can use IP from other programmers1

Observation 2: There are so-called soft processors

Small processors with own ISA

Mostly configurable in terms of Caches, Pipelining, floating
point operation etc.

Different optimizations for energy or throughput available

Usually programmed in C-like language with own compiler

1E.g. http://opencores.com/
DeepLearning on FPGAs 16

http://opencores.com/

FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Observation 1: We can use IP from other programmers1

Observation 2: There are so-called soft processors

Small processors with own ISA

Mostly configurable in terms of Caches, Pipelining, floating
point operation etc.

Different optimizations for energy or throughput available

Usually programmed in C-like language with own compiler

1E.g. http://opencores.com/
DeepLearning on FPGAs 16

http://opencores.com/

Deep Learning on FPGAs

How do we put Deep
Learning on FPGAs?

DeepLearning on FPGAs 17

Deep Learning: Some considerations

Why FPGAs for Deep Learning?
Fact: DeepLearning networks still have a lot of parameters
Additional: Many SGD steps are required to get reasonable results

We need a lot of data

We need to learn a lot of parameters

We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded
context’s, such as car, robots, etc.

⇒ Fast and energy efficient hardware and fast implementations
required!

DeepLearning on FPGAs 18

Deep Learning: Some considerations

Why FPGAs for Deep Learning?
Fact: DeepLearning networks still have a lot of parameters
Additional: Many SGD steps are required to get reasonable results

We need a lot of data

We need to learn a lot of parameters

We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded
context’s, such as car, robots, etc.

⇒ Fast and energy efficient hardware and fast implementations
required!

DeepLearning on FPGAs 18

Deep Learning: Some considerations

Why FPGAs for Deep Learning?
Fact: DeepLearning networks still have a lot of parameters
Additional: Many SGD steps are required to get reasonable results

We need a lot of data

We need to learn a lot of parameters

We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded
context’s, such as car, robots, etc.

⇒ Fast and energy efficient hardware and fast implementations
required!

DeepLearning on FPGAs 18

Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware
Note: This is well known. Many publications date back decades
ago about specialized Neural-Network hardware

Until 2010: Libs for NN mostly CPU based. Research for
dedicated hardware available.

From 2010: GPUs are widely available in mass-market. NN
libs with GPUs backends become popular.

Upcoming: More specialized hardware is being used

Januar 2016: Nvidias Drive PX2 for autonomous cars
June 2016: Googles Tensor Processing Unit (TPU)

Bottom-Line: Hardware-specific implementations play a great
part in DeepLearning!

DeepLearning on FPGAs 19

Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware
Note: This is well known. Many publications date back decades
ago about specialized Neural-Network hardware

Until 2010: Libs for NN mostly CPU based. Research for
dedicated hardware available.

From 2010: GPUs are widely available in mass-market. NN
libs with GPUs backends become popular.

Upcoming: More specialized hardware is being used

Januar 2016: Nvidias Drive PX2 for autonomous cars
June 2016: Googles Tensor Processing Unit (TPU)

Bottom-Line: Hardware-specific implementations play a great
part in DeepLearning!

DeepLearning on FPGAs 19

Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware
Note: This is well known. Many publications date back decades
ago about specialized Neural-Network hardware

Until 2010: Libs for NN mostly CPU based. Research for
dedicated hardware available.

From 2010: GPUs are widely available in mass-market. NN
libs with GPUs backends become popular.

Upcoming: More specialized hardware is being used

Januar 2016: Nvidias Drive PX2 for autonomous cars
June 2016: Googles Tensor Processing Unit (TPU)

Bottom-Line: Hardware-specific implementations play a great
part in DeepLearning!

DeepLearning on FPGAs 19

FPGAs as Co-Processors

Some facts about hardware:

CPUs are optimized towards latency
→ Execute a single operation as fast as possible

GPUs are optimized towards throughput
→ Process as much data a as fast as possible

FPGAs are optimized towards ?

Fact: CPU and GPU designers are smart people!
⇒ It is though to beat a CPU / GPU only with an FPGA

Rule-of-thump: CPU is good for control flow, FPGAs / GPUs are
good for number crunching
Thus: Combine FPGAs with CPUs

DeepLearning on FPGAs 20

FPGAs as Co-Processors

Some facts about hardware:

CPUs are optimized towards latency
→ Execute a single operation as fast as possible

GPUs are optimized towards throughput
→ Process as much data a as fast as possible

FPGAs are optimized towards ?

Fact: CPU and GPU designers are smart people!
⇒ It is though to beat a CPU / GPU only with an FPGA

Rule-of-thump: CPU is good for control flow, FPGAs / GPUs are
good for number crunching
Thus: Combine FPGAs with CPUs

DeepLearning on FPGAs 20

FPGAs as Co-Processors

Some facts about hardware:

CPUs are optimized towards latency
→ Execute a single operation as fast as possible

GPUs are optimized towards throughput
→ Process as much data a as fast as possible

FPGAs are optimized towards ?

Fact: CPU and GPU designers are smart people!
⇒ It is though to beat a CPU / GPU only with an FPGA

Rule-of-thump: CPU is good for control flow, FPGAs / GPUs are
good for number crunching
Thus: Combine FPGAs with CPUs

DeepLearning on FPGAs 20

FPGAs as Co-Processors

Either: As PCIe cards in desktop / server systems

Needs a custom written driver for PCIe

Usually needs special licenses on FPGA chip or own PCIe
protocol implementation

Requires full desktop system

Or: fully integrated on development boards

On-board connections are known, thus 1 driver needed

Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors

DeepLearning on FPGAs 21

FPGAs as Co-Processors

Either: As PCIe cards in desktop / server systems

Needs a custom written driver for PCIe

Usually needs special licenses on FPGA chip or own PCIe
protocol implementation

Requires full desktop system

Or: fully integrated on development boards

On-board connections are known, thus 1 driver needed

Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors

DeepLearning on FPGAs 21

Xilinx Zedboard

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Usually: CPUs also do not offer a runtime system
Thus: Run full blown Linux on CPU + develop software for CPU
+ specify hardware accelerator for FPGA
⇒ Easy software development for “glue” code + fast energy and
efficient computations

Question: How do we control the FPGA hardware accelerator?

DeepLearning on FPGAs 22

Xilinx Zedboard

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Usually: CPUs also do not offer a runtime system
Thus: Run full blown Linux on CPU + develop software for CPU
+ specify hardware accelerator for FPGA
⇒ Easy software development for “glue” code + fast energy and
efficient computations

Question: How do we control the FPGA hardware accelerator?

DeepLearning on FPGAs 22

Xilinx Zedboard

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Usually: CPUs also do not offer a runtime system
Thus: Run full blown Linux on CPU + develop software for CPU
+ specify hardware accelerator for FPGA
⇒ Easy software development for “glue” code + fast energy and
efficient computations

Question: How do we control the FPGA hardware accelerator?

DeepLearning on FPGAs 22

Software driven System on a Chip development
(SDSoC)

Note: FPGA interface might change
Thus: Linux kernel driver needed for every new hardware block
→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

Standard eclipse GUI for C/C++ programming
Standard gcc ARM compiler for C/C++ code
HLS automatically compiles C/C++ code to HDL
SDSoC generates a kernel driver based on the HLS’ output

Thus: SDSoC compiles C/C++ code, generated HDL code from
C/C++ and generated Linux kernel drivers
In the end: We get a bootable Linux image with integrated
hardware accelerator

DeepLearning on FPGAs 23

Software driven System on a Chip development
(SDSoC)

Note: FPGA interface might change
Thus: Linux kernel driver needed for every new hardware block
→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

Standard eclipse GUI for C/C++ programming
Standard gcc ARM compiler for C/C++ code
HLS automatically compiles C/C++ code to HDL
SDSoC generates a kernel driver based on the HLS’ output

Thus: SDSoC compiles C/C++ code, generated HDL code from
C/C++ and generated Linux kernel drivers
In the end: We get a bootable Linux image with integrated
hardware accelerator

DeepLearning on FPGAs 23

Software driven System on a Chip development
(SDSoC)

Note: FPGA interface might change
Thus: Linux kernel driver needed for every new hardware block
→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

Standard eclipse GUI for C/C++ programming
Standard gcc ARM compiler for C/C++ code
HLS automatically compiles C/C++ code to HDL
SDSoC generates a kernel driver based on the HLS’ output

Thus: SDSoC compiles C/C++ code, generated HDL code from
C/C++ and generated Linux kernel drivers
In the end: We get a bootable Linux image with integrated
hardware accelerator

DeepLearning on FPGAs 23

AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire
Fact 2: The ARMs hardware interface is fixed
⇒ The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how
system-on-a-chip components (CPU, RAM, FPGA...) should talk
to each other. There are 3 variants:

AXI-Lite: easy, simple communication

AXI-Stream: high throughput in streaming settings

AXI: high speed, low latency

Note: HLS generates the desired interface for us

DeepLearning on FPGAs 24

AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire
Fact 2: The ARMs hardware interface is fixed
⇒ The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how
system-on-a-chip components (CPU, RAM, FPGA...) should talk
to each other. There are 3 variants:

AXI-Lite: easy, simple communication

AXI-Stream: high throughput in streaming settings

AXI: high speed, low latency

Note: HLS generates the desired interface for us

DeepLearning on FPGAs 24

AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire
Fact 2: The ARMs hardware interface is fixed
⇒ The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how
system-on-a-chip components (CPU, RAM, FPGA...) should talk
to each other. There are 3 variants:

AXI-Lite: easy, simple communication

AXI-Stream: high throughput in streaming settings

AXI: high speed, low latency

Note: HLS generates the desired interface for us

DeepLearning on FPGAs 24

High Level Synthesis: Interface generation

1 #d e f i n e PRAGMA SUB(x) Pragma (#x)
2 #d e f i n e DO PRAGMA(x) PRAGMA SUB(x)
3 float d i f f (float const pX1 [dim] , float const pX2 [dim]) const {
4 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX1 depth=dim) ;
5 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX2 depth=dim) ;
6 #pragma HLS INTERFACE s a x i l i t e po r t=r e t u r n
7
8 float sum = 0 ;
9 for (unsigned int i = 0 ; i < dim ; ++i) {

10 sum += (pX1 [i]−pX2 [i])∗ (pX1 [i]−pX2 [i]) ;
11 }
12
13 return sum ;
14 }

Note 1: In standard C “bool predict(float const pX[dim])”
is the same as “bool predict(float const *pX)”, but HLS
explicitly needs to know the size!

Note 2: We use a special pragma if we need to use parameters
Note 3: s axilite can be replaced by axis for axi-stream

DeepLearning on FPGAs 25

High Level Synthesis: Interface generation

1 #d e f i n e PRAGMA SUB(x) Pragma (#x)
2 #d e f i n e DO PRAGMA(x) PRAGMA SUB(x)
3 float d i f f (float const pX1 [dim] , float const pX2 [dim]) const {
4 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX1 depth=dim) ;
5 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX2 depth=dim) ;
6 #pragma HLS INTERFACE s a x i l i t e po r t=r e t u r n
7
8 float sum = 0 ;
9 for (unsigned int i = 0 ; i < dim ; ++i) {

10 sum += (pX1 [i]−pX2 [i])∗ (pX1 [i]−pX2 [i]) ;
11 }
12
13 return sum ;
14 }

Note 1: In standard C “bool predict(float const pX[dim])”
is the same as “bool predict(float const *pX)”, but HLS
explicitly needs to know the size!
Note 2: We use a special pragma if we need to use parameters

Note 3: s axilite can be replaced by axis for axi-stream

DeepLearning on FPGAs 25

High Level Synthesis: Interface generation

1 #d e f i n e PRAGMA SUB(x) Pragma (#x)
2 #d e f i n e DO PRAGMA(x) PRAGMA SUB(x)
3 float d i f f (float const pX1 [dim] , float const pX2 [dim]) const {
4 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX1 depth=dim) ;
5 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX2 depth=dim) ;
6 #pragma HLS INTERFACE s a x i l i t e po r t=r e t u r n
7
8 float sum = 0 ;
9 for (unsigned int i = 0 ; i < dim ; ++i) {

10 sum += (pX1 [i]−pX2 [i])∗ (pX1 [i]−pX2 [i]) ;
11 }
12
13 return sum ;
14 }

Note 1: In standard C “bool predict(float const pX[dim])”
is the same as “bool predict(float const *pX)”, but HLS
explicitly needs to know the size!
Note 2: We use a special pragma if we need to use parameters
Note 3: s axilite can be replaced by axis for axi-stream

DeepLearning on FPGAs 25

High Level Synthesis

Question: How would we implement this function in hardware?

Idea: Subtract → multiply → sum → update sum:

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

t∆

Analysis: Signal delay ∆ = 4, needs dim clocks
Pragma: This is the HLS default

DeepLearning on FPGAs 26

High Level Synthesis

Question: How would we implement this function in hardware?
Idea: Subtract → multiply → sum → update sum:

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

t∆

Analysis: Signal delay ∆ = 4, needs dim clocks
Pragma: This is the HLS default

DeepLearning on FPGAs 26

High Level Synthesis

Question: How would we implement this function in hardware?
Idea: Subtract → multiply → sum → update sum:

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

t∆

Analysis: Signal delay ∆ = 4, needs dim clocks
Pragma: This is the HLS default

DeepLearning on FPGAs 26

High Level Synthesis

Question: How would we implement this function in hardware?
Idea: Subtract → multiply → sum → update sum:

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

t∆

Analysis: Signal delay ∆ = 4, needs dim clocks
Pragma: This is the HLS default

DeepLearning on FPGAs 26

High Level Synthesis: Pipelining

Observation: Only 1 functional unit active at a time. Pipeline
execution to utilize every functional unit

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

(pX1[i-1] - pX2[i-1])

(pX1[i-1] - pX2[i-1])

(pX1[i-2] - pX2[i-2])2

t∆ ∆ ∆

Analysis: Signal delay ∆ = 1, dim+4 clocks needed
Pragma: #pragma HLS PIPELINE

DeepLearning on FPGAs 27

High Level Synthesis: Pipelining

Observation: Only 1 functional unit active at a time. Pipeline
execution to utilize every functional unit

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

(pX1[i-1] - pX2[i-1])

(pX1[i-1] - pX2[i-1])

(pX1[i-2] - pX2[i-2])2

t∆ ∆ ∆

Analysis: Signal delay ∆ = 1, dim+4 clocks needed
Pragma: #pragma HLS PIPELINE

DeepLearning on FPGAs 27

High Level Synthesis: Pipelining

Observation: Only 1 functional unit active at a time. Pipeline
execution to utilize every functional unit

Control-
logic

−

−

× +

sum
read / write

pX1[i]

pX2[i]

(pX1[i-1] - pX2[i-1])

(pX1[i-1] - pX2[i-1])

(pX1[i-2] - pX2[i-2])2

t∆ ∆ ∆

Analysis: Signal delay ∆ = 1, dim+4 clocks needed
Pragma: #pragma HLS PIPELINE

DeepLearning on FPGAs 27

High Level Synthesis: Loop unrolling

Observation: We can compute the subtraction and multiplication
in complete parallel

C
on

tr
ol
-

lo
gi
c

−−

×

−−

×

+

. . . −−

×

−−

×

+

+
su
m

p
X
1
[
0
]

p
X
2
[
0
]

p
X
1
[
1
]

p
X
2
[
1
]

p
X
1
[
d
i
m
-
1
]

p
X
2
[
d
i
m
-
1
]

p
X
1
[
d
i
m
]

p
X
2
[
d
i
m
]

t
∆

Analysis: Signal delay ∆ = 4, 2 clocks needed
Pragma: #pragma HLS UNROLL

DeepLearning on FPGAs 28

High Level Synthesis: Loop unrolling

Observation: We can compute the subtraction and multiplication
in complete parallel

C
on

tr
ol
-

lo
gi
c

−−

×

−−

×

+

. . . −−

×

−−

×

+

+
su
m

p
X
1
[
0
]

p
X
2
[
0
]

p
X
1
[
1
]

p
X
2
[
1
]

p
X
1
[
d
i
m
-
1
]

p
X
2
[
d
i
m
-
1
]

p
X
1
[
d
i
m
]

p
X
2
[
d
i
m
]

t
∆

Analysis: Signal delay ∆ = 4, 2 clocks needed
Pragma: #pragma HLS UNROLL

DeepLearning on FPGAs 28

High Level Synthesis: Loop unrolling

Observation: We can compute the subtraction and multiplication
in complete parallel

C
on

tr
ol
-

lo
gi
c

−−

×

−−

×

+

. . . −−

×

−−

×

+

+
su
m

p
X
1
[
0
]

p
X
2
[
0
]

p
X
1
[
1
]

p
X
2
[
1
]

p
X
1
[
d
i
m
-
1
]

p
X
2
[
d
i
m
-
1
]

p
X
1
[
d
i
m
]

p
X
2
[
d
i
m
]

t
∆

Analysis: Signal delay ∆ = 4, 2 clocks needed
Pragma: #pragma HLS UNROLL

DeepLearning on FPGAs 28

HLS: Optimizations

Question: So what’s best to use? Pipeline? Loop unrolling?

Depends on problem, but usually:

Loop unrolling: Needs a lot of space, but offers high
parallelism. Clock frequency suffers from large structure.
Pipelining: Good compromise between parallelism and small
structure with high clock frequency.

Note 1: Only “perfect” loops can be unrolled!
⇒ If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail
⇒ Nested loops need to be unrolled

A note on memory: HLS will try to use Block-RAM when
possible (→ use the static keyword whenever possible).
Otherwise it uses CLB for memory. It will never access DDR RAM

DeepLearning on FPGAs 29

HLS: Optimizations

Question: So what’s best to use? Pipeline? Loop unrolling?
Depends on problem, but usually:

Loop unrolling: Needs a lot of space, but offers high
parallelism. Clock frequency suffers from large structure.
Pipelining: Good compromise between parallelism and small
structure with high clock frequency.

Note 1: Only “perfect” loops can be unrolled!
⇒ If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail
⇒ Nested loops need to be unrolled

A note on memory: HLS will try to use Block-RAM when
possible (→ use the static keyword whenever possible).
Otherwise it uses CLB for memory. It will never access DDR RAM

DeepLearning on FPGAs 29

HLS: Optimizations

Question: So what’s best to use? Pipeline? Loop unrolling?
Depends on problem, but usually:

Loop unrolling: Needs a lot of space, but offers high
parallelism. Clock frequency suffers from large structure.
Pipelining: Good compromise between parallelism and small
structure with high clock frequency.

Note 1: Only “perfect” loops can be unrolled!
⇒ If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail
⇒ Nested loops need to be unrolled

A note on memory: HLS will try to use Block-RAM when
possible (→ use the static keyword whenever possible).
Otherwise it uses CLB for memory. It will never access DDR RAM

DeepLearning on FPGAs 29

HLS: Optimizations

Question: So what’s best to use? Pipeline? Loop unrolling?
Depends on problem, but usually:

Loop unrolling: Needs a lot of space, but offers high
parallelism. Clock frequency suffers from large structure.
Pipelining: Good compromise between parallelism and small
structure with high clock frequency.

Note 1: Only “perfect” loops can be unrolled!
⇒ If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail
⇒ Nested loops need to be unrolled

A note on memory: HLS will try to use Block-RAM when
possible (→ use the static keyword whenever possible).
Otherwise it uses CLB for memory. It will never access DDR RAM

DeepLearning on FPGAs 29

HLS: Optimizations

Question: So what’s best to use? Pipeline? Loop unrolling?
Depends on problem, but usually:

Loop unrolling: Needs a lot of space, but offers high
parallelism. Clock frequency suffers from large structure.
Pipelining: Good compromise between parallelism and small
structure with high clock frequency.

Note 1: Only “perfect” loops can be unrolled!
⇒ If a loop contains branches (if-clause), we cannot unroll it

Note 2: Sometimes even pipelining might fail
⇒ Nested loops need to be unrolled

A note on memory: HLS will try to use Block-RAM when
possible (→ use the static keyword whenever possible).
Otherwise it uses CLB for memory. It will never access DDR RAM

DeepLearning on FPGAs 29

FPGA: Custom data ranges

Fact 1: FPGAs offer arbitrary data ranges and data types
Rule-of-thump: The less bits, the better for synthesis

Fact: For computing, integer operations are the easiest and fastest
But: Sometimes floating point is needed
Fact 2: IEEE-754 floating point operations are slow compared to
integer operations (Mantissa needs normalization)

Thus: Use a Fixed point number N = A.B with fixed sized
integers A and B
⇒ Fast floating point operations with reduced accuracy possible

Tip: Start to think in terms of bits with integer operations

DeepLearning on FPGAs 30

FPGA: Custom data ranges

Fact 1: FPGAs offer arbitrary data ranges and data types
Rule-of-thump: The less bits, the better for synthesis

Fact: For computing, integer operations are the easiest and fastest
But: Sometimes floating point is needed
Fact 2: IEEE-754 floating point operations are slow compared to
integer operations (Mantissa needs normalization)

Thus: Use a Fixed point number N = A.B with fixed sized
integers A and B
⇒ Fast floating point operations with reduced accuracy possible

Tip: Start to think in terms of bits with integer operations

DeepLearning on FPGAs 30

FPGA: Custom data ranges

Fact 1: FPGAs offer arbitrary data ranges and data types
Rule-of-thump: The less bits, the better for synthesis

Fact: For computing, integer operations are the easiest and fastest
But: Sometimes floating point is needed
Fact 2: IEEE-754 floating point operations are slow compared to
integer operations (Mantissa needs normalization)

Thus: Use a Fixed point number N = A.B with fixed sized
integers A and B
⇒ Fast floating point operations with reduced accuracy possible

Tip: Start to think in terms of bits with integer operations

DeepLearning on FPGAs 30

Deep Learning on FPGAs

Question: So how do we implement Deep Learning on FPGAs?

Some ideas from a hardware perspective:

Reduce communication: Reduce communication between
ARM and FPGA to a minimum. Usually, this is your
bottleneck.

Use on-chip memory: If your neural networks are small
enough, store weights in on-chip memory.

Use compile-time constants: The more the compiler knows
at compile time, the better. Use fixed values and upper
bounds for loops as often as possible.

Use parallelism: Unroll small structures / parts of your code,
e.g. multiplying weights with input values

DeepLearning on FPGAs 31

Deep Learning on FPGAs

Question: So how do we implement Deep Learning on FPGAs?
Some ideas from a hardware perspective:

Reduce communication: Reduce communication between
ARM and FPGA to a minimum. Usually, this is your
bottleneck.

Use on-chip memory: If your neural networks are small
enough, store weights in on-chip memory.

Use compile-time constants: The more the compiler knows
at compile time, the better. Use fixed values and upper
bounds for loops as often as possible.

Use parallelism: Unroll small structures / parts of your code,
e.g. multiplying weights with input values

DeepLearning on FPGAs 31

Deep Learning on FPGAs (2)

Question: So how do we implement Deep Learning on FPGAs?

Some ideas from a the ML perspective:

Reduce data range: Use fixed point whenever possible:
Fixed floating point can be implemented efficiently with
integer operations. Maybe even reduce the data range.

Perform batch SGD: Load a batch of data points on FPGA
and perform gradient with on-chip-memory batches.

Change activation function: Do we really need sigmoid in
multiple layers? Maybe one sigmoid layer is enough?

Unsynchronized dropout: Dropout is computed by each
neuron individually.

Note: Changes must be evaluated with respect to accuracy!

DeepLearning on FPGAs 32

Deep Learning on FPGAs (2)

Question: So how do we implement Deep Learning on FPGAs?
Some ideas from a the ML perspective:

Reduce data range: Use fixed point whenever possible:
Fixed floating point can be implemented efficiently with
integer operations. Maybe even reduce the data range.

Perform batch SGD: Load a batch of data points on FPGA
and perform gradient with on-chip-memory batches.

Change activation function: Do we really need sigmoid in
multiple layers? Maybe one sigmoid layer is enough?

Unsynchronized dropout: Dropout is computed by each
neuron individually.

Note: Changes must be evaluated with respect to accuracy!

DeepLearning on FPGAs 32

Deep Learning on FPGAs (2)

Question: So how do we implement Deep Learning on FPGAs?
Some ideas from a the ML perspective:

Reduce data range: Use fixed point whenever possible:
Fixed floating point can be implemented efficiently with
integer operations. Maybe even reduce the data range.

Perform batch SGD: Load a batch of data points on FPGA
and perform gradient with on-chip-memory batches.

Change activation function: Do we really need sigmoid in
multiple layers? Maybe one sigmoid layer is enough?

Unsynchronized dropout: Dropout is computed by each
neuron individually.

Note: Changes must be evaluated with respect to accuracy!

DeepLearning on FPGAs 32

Summary

Important concepts:

Moore’s law will expire around 2020

FPGAs are programmable hardware circuits

FPGAs work well with parallelism and custom data ranges

Use a combination of CPU and FPGA

HLS helps us to program FPGAs in a timely matter

Loop unrolling / Pipelining are two possible optimizations

Reduce communication between CPU and FPGA

Use fixed floating point operations if possible

DeepLearning on FPGAs 33

	Recap

