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Recap: Homework

Question: So whats your accuracy?
Question: What about speed?

Some remark about notation: In the previous slides I used θ
twice with different meaning

1) As “bias” parameter for the perceptron

2) As vector-to-be-optimized by gradient descent

⇒ This is now changed. θ will always be used in a general fashion
as the vector-to-be-optimized.

Any questions / remarks / whatsoever?
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Recap: Data Mining (1)

Important concepts:

Feature Engineering is key to solve Data Mining tasks

Deep Learning combines learning and Feature Engineering

Data Mining approach:
Specify model family (→ perceptron)
Specify optimization procedure (→ gradient descent)
Specify a cost / loss function (→ RMSE or cross-entropy)

Perceptron: A linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else
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Recap: Data Mining (2)

Optimization procedure: Gradient descent

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)

Loss function: RMSE or cross-entropy

`(D, θ̂) =

√√√√ 1

N

N∑

i=1

(
yi − fθ̂(~xi)

)2

`(D, θ̂) = − 1

N

N∑

i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))

So far: Training of single perceptron
Now: Training of multi-layer perceptron (MLP)
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MLP: Some Notation (1)

x1

x2

...

xd

...

i

...

...

j

...

bj
w

(l+1)
ij

M(l) M(l+1)

l l + 1

output f
(l)
i

ŷ

w
(l+1)
i,j =̂ Weight from neuron i in layer l to neuron j in layer l + 1
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MLP: Learning

Obviously: We need to learn the weights w
(l)
i,j and bias b

(l)
j

So far: We intuitively derived a learning algorithm

Observation: For MLPs we can compare the output layer with our
desired output, but what about hidden layers?
Thus: We use gradient descent + “simple” math
Gradient descent:

ŵnew = ŵold − α · ∇ŵ`(D, ŵ)

Loss function:

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2
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MLP: Learning (2)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation: We need to take the derivative of the loss function

But: Loss functions looks complicated
Observation 1: Square-Root is monotone
Observation 2: Loss function depends on entire training data set!
Thus: Perform stochastic gradient descent

Randomly choose one examples i to compute the loss function

Update the parameters as in normal gradient descent

Continue until convergence

Note: For α→ 0 it “almost surely” converges
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MLP: Learning (3)

New loss function:

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation: We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation: f is not continuous in 0 (it makes a step)
Thus: Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!
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Thus: Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 8



MLP: Activation function
Solution: We need to make f continuous

Bonus: This seems to be a little closer to real neurons
Bonus 2: We have non-linearity inside the network (more later)

Idea: Use sigmoid activation function

x

y

−4 −3 −2 −1 1 2 3 4

1

σ(z) =
1

1 + e−β·z
, β ∈ R>0

Note: β controls slope around 0
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Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)
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MLP: Activation function (2)

But: Binary classification assumes Y = {0,+1}

Thus: Given L layer in total

Internally: We use f
(l+1)
j = σ

(∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j

)

Prediction: Is mapped to 0 or 1:

f̂(~x) =

{
+1 if σ

(∑M(L−1)

i=0 w
(L)
i f

(L−1)
i + b(L)

)
≥ 0

0 else

Learning with gradient descent:

w
(l)
i,j = w

(l)
i,j − α ·

∂`

∂w
(l)
i,j

b
(l)
j = b

(l)
j − α ·

∂`

∂b
(l)
j
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MLP: Notation Recap

Note: Too many l and `’s: Use E = ` (loss) for easier reading

...

i

...

...

j

...

bj
w

(l+1)
ij

l l + 1

output f
(l)
i

M(l) M(l+1)

find :
∂E

∂w
(l)
i,j

,
∂E

∂b
(l)
j

M (l) =̂ #Neurons in layer l

y
(l+1)
j =

M(l)∑

i=0

w
(l+1)
i,j f

(l)
i + b

(l+1)
j

f
(l+1)
j = σ

(
y
(l+1)
j

)

σ(z) =
1

1 + e−β·z
, β = 1
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Backpropagation for sigmoid activation / RMSE loss

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l)
j f

(l−1)
i

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ
(l−1)
j = f

(l−1)
j

(
1− f (l−1)

j

)M(l)∑

k=1

δ
(l)
k w

(l)
j,k

δ
(L)
j = −

(
yi − f (L)j

)
f
(L)
j

(
1− f (L)j

)

derivative of
activation function

derivative of
loss function
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Backpropagation for activation h / loss `

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l)
j f

(l−1)
i

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
j,k

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i
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Backpropagation: Different notation

Notation: We used scalar notation so far
Fact: Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us: We want to implement backprop. from scratch, thus
scalar notation is closer to our implementation
But: Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication
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Backpropagation: Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus: Implement neural networks layer-wise:

Each layer / neuron has activation function

Each layer / neuron has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus: Arbitrary network architectures can be realised without
changing learning algorithm
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Network architectures
Question: So what is a good architecture?

Answer: Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas:

Non-linear activation: A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation: To prevent over-fitting, only a few
neurons of the network should be active at the same time

Fast convergence: The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction: Combining multiple layers in deeper
networks usually allows (higher) level feature extraction
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Backpropagation: Vanishing gradients

Observation 1: σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2: ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 1]

Observation 3: Errors are multiplied from the next layer

Thus: The error tends to become very small after a few layers
⇒ The gradient vanishes in each layer more and more

So far: No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network
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New activation function: ReLu
Rectified Linear (ReLu):

x

y

−2 −1 1 2

1

2

h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note: ReLu is not differentiable in z = 0!
But: Usually that is not a problem

Practical: z = 0 is pretty rare, just use 0 there. It works well

Mathematical: There exists a subgradient of h(z) at 0
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ReLu(2)

Subgradients: A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu: We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note: Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu:

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

Less problems with gradient vanishing, since error is multiplied
by 1 or 0

Still gives network non-linear activation
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Improve convergence for GD: Simple improvements

Gradient descent:

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)

Momentum: Keep the momentum from previous updates

∆θ̂old = α1 · ∇θ`(D, θ̂old) + α2∆θ̂
old

θ̂new = θ̂old −∆θ̂old

(Mini-)Batch: Compute derivatives for multiple examples and
average direction (allows parallel computation of gradient)

θ̂new = θ̂old − α · 1

K

K∑

i=0

∇θ`(~xi, θ̂old)

Note: For Mini-Batch approaches the convergence is not
guranteed theoretically
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Improve convergence: Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually: Small α = 0.001− 0.1 with a lot of data
Note: We can always reuse our data (multiple passes over dataset)
But: Stepsize is problem specific as always!

Practical suggestion: Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote: Changing the stepsize while training also possible
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Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function
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⇒ ∂`

∂ŷ
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∂ŷ
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ŷ
+

1− y
1− ŷ =
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Improve Convergence: Start solution

Where do we start?
In SGD: Start with some θ. SGD will walk us the right direction
Important: For NN (specifically for MSE + sigmoid activation)
we need “sane” initialization:

δ
(L)
j = −

(
yi − f (L)j

)
f
(L)
j

(
1− f (L)j

)

⇒ δ
(L)
j = 0, if f

(L)
j = 0 or f

(L)
j = 1

Therefore: Init weights randomly with gaussian distribution

w
(l)
ij ∼ N (0, ε) with ε = 0.001− 0.1

Bonus: Negative weights are also present
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Summary

Important concepts:

For parameter optimization we define a loss function

For parameter optimization we use gradient descent

Neurons have activation functions to ensure non-linearity and
differentiability

Backpropagation is an algorithm to compute the gradient

Non-linear and sparse networks are usually better

Various techniques can be used to improve convergence
speed
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Homework
Homework until next meeting

Implement the following network to solve the XOR problem
x1

x2

Implement backpropagation for this network
Try a simple solution first: Hardcode one activation / one loss
function with fixed access to data structures

If you feel comfortable, add new activation / loss functions

Tip 1: Verify that the proposed network uses 9 parameters
Tip 2: Start with α = 1.0 and 10000 training examples
Note: We will later use C, so please use C or a C-like language
Question: Can you reduce the number of examples necessary?
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