
DeepLearning on FPGAs
Artificial Neural Networks: Backpropagation and more

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

November 10, 2016

1



Recap: Homework

Question: So whats your accuracy?
Question: What about speed?

Some remark about notation: In the previous slides I used θ
twice with different meaning

1) As “bias” parameter for the perceptron

2) As vector-to-be-optimized by gradient descent

⇒ This is now changed. θ will always be used in a general fashion
as the vector-to-be-optimized.

Any questions / remarks / whatsoever?

DeepLearning on FPGAs 2



Recap: Homework

Question: So whats your accuracy?
Question: What about speed?

Some remark about notation: In the previous slides I used θ
twice with different meaning

1) As “bias” parameter for the perceptron

2) As vector-to-be-optimized by gradient descent

⇒ This is now changed. θ will always be used in a general fashion
as the vector-to-be-optimized.

Any questions / remarks / whatsoever?

DeepLearning on FPGAs 2



Recap: Data Mining (1)

Important concepts:

Feature Engineering is key to solve Data Mining tasks

Deep Learning combines learning and Feature Engineering

Data Mining approach:
Specify model family (→ perceptron)
Specify optimization procedure (→ gradient descent)
Specify a cost / loss function (→ RMSE or cross-entropy)

Perceptron: A linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

DeepLearning on FPGAs 3



Recap: Data Mining (1)

Important concepts:

Feature Engineering is key to solve Data Mining tasks

Deep Learning combines learning and Feature Engineering

Data Mining approach:
Specify model family (→ perceptron)
Specify optimization procedure (→ gradient descent)
Specify a cost / loss function (→ RMSE or cross-entropy)

Perceptron: A linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

DeepLearning on FPGAs 3



Recap: Data Mining (2)

Optimization procedure: Gradient descent

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)

Loss function: RMSE or cross-entropy

`(D, θ̂) =

√√√√ 1

N

N∑

i=1

(
yi − fθ̂(~xi)

)2

`(D, θ̂) = − 1

N

N∑

i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))

So far: Training of single perceptron
Now: Training of multi-layer perceptron (MLP)

DeepLearning on FPGAs 4



Recap: Data Mining (2)

Optimization procedure: Gradient descent

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)
Loss function: RMSE or cross-entropy

`(D, θ̂) =

√√√√ 1

N

N∑

i=1

(
yi − fθ̂(~xi)

)2

`(D, θ̂) = − 1

N

N∑

i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))

So far: Training of single perceptron
Now: Training of multi-layer perceptron (MLP)

DeepLearning on FPGAs 4



Recap: Data Mining (2)

Optimization procedure: Gradient descent

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)
Loss function: RMSE or cross-entropy

`(D, θ̂) =

√√√√ 1

N

N∑

i=1

(
yi − fθ̂(~xi)

)2

`(D, θ̂) = − 1

N

N∑

i=1

(
yi ln

(
f
θ̂
(~xi)

)
+ (1− yi) ln

(
1− f

θ̂
(~xi)

))

So far: Training of single perceptron
Now: Training of multi-layer perceptron (MLP)

DeepLearning on FPGAs 4



MLP: Some Notation (1)

x1

x2

...

xd

...

i

...

...

j

...

bj
w

(l+1)
ij

M(l) M(l+1)

l l + 1

output f
(l)
i

ŷ

w
(l+1)
i,j =̂ Weight from neuron i in layer l to neuron j in layer l + 1

DeepLearning on FPGAs 5



MLP: Learning

Obviously: We need to learn the weights w
(l)
i,j and bias b

(l)
j

So far: We intuitively derived a learning algorithm

Observation: For MLPs we can compare the output layer with our
desired output, but what about hidden layers?
Thus: We use gradient descent + “simple” math
Gradient descent:

ŵnew = ŵold − α · ∇ŵ`(D, ŵ)

Loss function:

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

DeepLearning on FPGAs 6



MLP: Learning

Obviously: We need to learn the weights w
(l)
i,j and bias b

(l)
j

So far: We intuitively derived a learning algorithm
Observation: For MLPs we can compare the output layer with our
desired output, but what about hidden layers?
Thus: We use gradient descent + “simple” math

Gradient descent:

ŵnew = ŵold − α · ∇ŵ`(D, ŵ)

Loss function:

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

DeepLearning on FPGAs 6



MLP: Learning

Obviously: We need to learn the weights w
(l)
i,j and bias b

(l)
j

So far: We intuitively derived a learning algorithm
Observation: For MLPs we can compare the output layer with our
desired output, but what about hidden layers?
Thus: We use gradient descent + “simple” math
Gradient descent:

ŵnew = ŵold − α · ∇ŵ`(D, ŵ)

Loss function:

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

DeepLearning on FPGAs 6



MLP: Learning (2)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation: We need to take the derivative of the loss function

But: Loss functions looks complicated
Observation 1: Square-Root is monotone
Observation 2: Loss function depends on entire training data set!
Thus: Perform stochastic gradient descent

Randomly choose one examples i to compute the loss function

Update the parameters as in normal gradient descent

Continue until convergence

Note: For α→ 0 it “almost surely” converges

DeepLearning on FPGAs 7



MLP: Learning (2)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation: We need to take the derivative of the loss function
But: Loss functions looks complicated
Observation 1: Square-Root is monotone
Observation 2: Loss function depends on entire training data set!

Thus: Perform stochastic gradient descent

Randomly choose one examples i to compute the loss function

Update the parameters as in normal gradient descent

Continue until convergence

Note: For α→ 0 it “almost surely” converges

DeepLearning on FPGAs 7



MLP: Learning (2)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation: We need to take the derivative of the loss function
But: Loss functions looks complicated
Observation 1: Square-Root is monotone
Observation 2: Loss function depends on entire training data set!
Thus: Perform stochastic gradient descent

Randomly choose one examples i to compute the loss function

Update the parameters as in normal gradient descent

Continue until convergence

Note: For α→ 0 it “almost surely” converges

DeepLearning on FPGAs 7



MLP: Learning (2)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation: We need to take the derivative of the loss function
But: Loss functions looks complicated
Observation 1: Square-Root is monotone
Observation 2: Loss function depends on entire training data set!
Thus: Perform stochastic gradient descent

Randomly choose one examples i to compute the loss function

Update the parameters as in normal gradient descent

Continue until convergence

Note: For α→ 0 it “almost surely” converges
DeepLearning on FPGAs 7



MLP: Learning (3)

New loss function:

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation: We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation: f is not continuous in 0 (it makes a step)
Thus: Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 8



MLP: Learning (3)

New loss function:

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation: We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation: f is not continuous in 0 (it makes a step)
Thus: Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 8



MLP: Learning (3)

New loss function:

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation: We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation: f is not continuous in 0 (it makes a step)
Thus: Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 8



MLP: Learning (3)

New loss function:

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation: We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation: f is not continuous in 0 (it makes a step)
Thus: Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 8



MLP: Activation function
Solution: We need to make f continuous

Bonus: This seems to be a little closer to real neurons
Bonus 2: We have non-linearity inside the network (more later)

Idea: Use sigmoid activation function

x

y

−4 −3 −2 −1 1 2 3 4

1

σ(z) =
1

1 + e−β·z
, β ∈ R>0

Note: β controls slope around 0

DeepLearning on FPGAs 9



MLP: Activation function
Solution: We need to make f continuous
Bonus: This seems to be a little closer to real neurons
Bonus 2: We have non-linearity inside the network (more later)

Idea: Use sigmoid activation function

x

y

−4 −3 −2 −1 1 2 3 4

1

σ(z) =
1

1 + e−β·z
, β ∈ R>0

Note: β controls slope around 0

DeepLearning on FPGAs 9



MLP: Activation function
Solution: We need to make f continuous
Bonus: This seems to be a little closer to real neurons
Bonus 2: We have non-linearity inside the network (more later)

Idea: Use sigmoid activation function

x

y

−4 −3 −2 −1 1 2 3 4

1

σ(z) =
1

1 + e−β·z
, β ∈ R>0

Note: β controls slope around 0
DeepLearning on FPGAs 9



Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 10



Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 10



Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 10



Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 10



Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 10



Sigmoid activation function: Derivative

Given: σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative:

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 10



MLP: Activation function (2)

But: Binary classification assumes Y = {0,+1}

Thus: Given L layer in total

Internally: We use f
(l+1)
j = σ

(∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j

)

Prediction: Is mapped to 0 or 1:

f̂(~x) =

{
+1 if σ

(∑M(L−1)

i=0 w
(L)
i f

(L−1)
i + b(L)

)
≥ 0

0 else

Learning with gradient descent:

w
(l)
i,j = w

(l)
i,j − α ·

∂`

∂w
(l)
i,j

b
(l)
j = b

(l)
j − α ·

∂`

∂b
(l)
j

DeepLearning on FPGAs 11



MLP: Activation function (2)

But: Binary classification assumes Y = {0,+1}
Thus: Given L layer in total

Internally: We use f
(l+1)
j = σ

(∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j

)

Prediction: Is mapped to 0 or 1:

f̂(~x) =

{
+1 if σ

(∑M(L−1)

i=0 w
(L)
i f

(L−1)
i + b(L)

)
≥ 0

0 else

Learning with gradient descent:

w
(l)
i,j = w

(l)
i,j − α ·

∂`

∂w
(l)
i,j

b
(l)
j = b

(l)
j − α ·

∂`

∂b
(l)
j

DeepLearning on FPGAs 11



MLP: Activation function (2)

But: Binary classification assumes Y = {0,+1}
Thus: Given L layer in total

Internally: We use f
(l+1)
j = σ

(∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j

)

Prediction: Is mapped to 0 or 1:

f̂(~x) =

{
+1 if σ

(∑M(L−1)

i=0 w
(L)
i f

(L−1)
i + b(L)

)
≥ 0

0 else

Learning with gradient descent:

w
(l)
i,j = w

(l)
i,j − α ·

∂`

∂w
(l)
i,j

b
(l)
j = b

(l)
j − α ·

∂`

∂b
(l)
j

DeepLearning on FPGAs 11



MLP: Notation Recap

Note: Too many l and `’s: Use E = ` (loss) for easier reading

...

i

...

...

j

...

bj
w

(l+1)
ij

l l + 1

output f
(l)
i

M(l) M(l+1)

find :
∂E

∂w
(l)
i,j

,
∂E

∂b
(l)
j

M (l) =̂ #Neurons in layer l

y
(l+1)
j =

M(l)∑

i=0

w
(l+1)
i,j f

(l)
i + b

(l+1)
j

f
(l+1)
j = σ

(
y
(l+1)
j

)

σ(z) =
1

1 + e−β·z
, β = 1

DeepLearning on FPGAs 12



. . .

. . .

. . .

DeepLearning on FPGAs 13



Backpropagation for sigmoid activation / RMSE loss

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l)
j f

(l−1)
i

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ
(l−1)
j = f

(l−1)
j

(
1− f (l−1)

j

)M(l)∑

k=1

δ
(l)
k w

(l)
j,k

δ
(L)
j = −

(
yi − f (L)j

)
f
(L)
j

(
1− f (L)j

)

derivative of
activation function

derivative of
loss function

DeepLearning on FPGAs 14



Backpropagation for sigmoid activation / RMSE loss

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l)
j f

(l−1)
i

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ
(l−1)
j = f

(l−1)
j

(
1− f (l−1)

j

)M(l)∑

k=1

δ
(l)
k w

(l)
j,k

δ
(L)
j = −

(
yi − f (L)j

)
f
(L)
j

(
1− f (L)j

)

derivative of
activation function

derivative of
loss function

DeepLearning on FPGAs 14



Backpropagation for activation h / loss `

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l)
j f

(l−1)
i

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
j,k

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

DeepLearning on FPGAs 15



Backpropagation: Different notation

Notation: We used scalar notation so far
Fact: Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us: We want to implement backprop. from scratch, thus
scalar notation is closer to our implementation
But: Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 16



Backpropagation: Different notation

Notation: We used scalar notation so far
Fact: Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us: We want to implement backprop. from scratch, thus
scalar notation is closer to our implementation
But: Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 16



Backpropagation: Different notation

Notation: We used scalar notation so far
Fact: Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us: We want to implement backprop. from scratch, thus
scalar notation is closer to our implementation
But: Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 16



Backpropagation: Different notation

Notation: We used scalar notation so far
Fact: Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us: We want to implement backprop. from scratch, thus
scalar notation is closer to our implementation
But: Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 16



Backpropagation: Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus: Implement neural networks layer-wise:

Each layer / neuron has activation function

Each layer / neuron has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus: Arbitrary network architectures can be realised without
changing learning algorithm

DeepLearning on FPGAs 17



Backpropagation: Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus: Implement neural networks layer-wise:

Each layer / neuron has activation function

Each layer / neuron has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus: Arbitrary network architectures can be realised without
changing learning algorithm

DeepLearning on FPGAs 17



Backpropagation: Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus: Implement neural networks layer-wise:

Each layer / neuron has activation function

Each layer / neuron has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus: Arbitrary network architectures can be realised without
changing learning algorithm

DeepLearning on FPGAs 17



Network architectures
Question: So what is a good architecture?

Answer: Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas:

Non-linear activation: A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation: To prevent over-fitting, only a few
neurons of the network should be active at the same time

Fast convergence: The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction: Combining multiple layers in deeper
networks usually allows (higher) level feature extraction

DeepLearning on FPGAs 18



Network architectures
Question: So what is a good architecture?
Answer: Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas:

Non-linear activation: A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation: To prevent over-fitting, only a few
neurons of the network should be active at the same time

Fast convergence: The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction: Combining multiple layers in deeper
networks usually allows (higher) level feature extraction

DeepLearning on FPGAs 18



Network architectures
Question: So what is a good architecture?
Answer: Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas:

Non-linear activation: A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation: To prevent over-fitting, only a few
neurons of the network should be active at the same time

Fast convergence: The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction: Combining multiple layers in deeper
networks usually allows (higher) level feature extraction

DeepLearning on FPGAs 18



Backpropagation: Vanishing gradients

Observation 1: σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2: ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 1]

Observation 3: Errors are multiplied from the next layer

Thus: The error tends to become very small after a few layers
⇒ The gradient vanishes in each layer more and more

So far: No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network

DeepLearning on FPGAs 19



Backpropagation: Vanishing gradients

Observation 1: σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2: ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 1]

Observation 3: Errors are multiplied from the next layer

Thus: The error tends to become very small after a few layers
⇒ The gradient vanishes in each layer more and more

So far: No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network

DeepLearning on FPGAs 19



Backpropagation: Vanishing gradients

Observation 1: σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2: ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 1]

Observation 3: Errors are multiplied from the next layer

Thus: The error tends to become very small after a few layers
⇒ The gradient vanishes in each layer more and more

So far: No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network

DeepLearning on FPGAs 19



New activation function: ReLu
Rectified Linear (ReLu):

x

y

−2 −1 1 2

1

2

h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note: ReLu is not differentiable in z = 0!
But: Usually that is not a problem

Practical: z = 0 is pretty rare, just use 0 there. It works well

Mathematical: There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 20



New activation function: ReLu
Rectified Linear (ReLu):

x

y

−2 −1 1 2

1

2
h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note: ReLu is not differentiable in z = 0!
But: Usually that is not a problem

Practical: z = 0 is pretty rare, just use 0 there. It works well

Mathematical: There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 20



New activation function: ReLu
Rectified Linear (ReLu):

x

y

−2 −1 1 2

1

2
h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note: ReLu is not differentiable in z = 0!

But: Usually that is not a problem

Practical: z = 0 is pretty rare, just use 0 there. It works well

Mathematical: There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 20



New activation function: ReLu
Rectified Linear (ReLu):

x

y

−2 −1 1 2

1

2
h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note: ReLu is not differentiable in z = 0!
But: Usually that is not a problem

Practical: z = 0 is pretty rare, just use 0 there. It works well

Mathematical: There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 20



ReLu(2)

Subgradients: A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu: We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note: Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu:

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

Less problems with gradient vanishing, since error is multiplied
by 1 or 0

Still gives network non-linear activation

DeepLearning on FPGAs 21



ReLu(2)

Subgradients: A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu: We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note: Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu:

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

Less problems with gradient vanishing, since error is multiplied
by 1 or 0

Still gives network non-linear activation

DeepLearning on FPGAs 21



ReLu(2)

Subgradients: A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu: We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note: Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu:

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

Less problems with gradient vanishing, since error is multiplied
by 1 or 0

Still gives network non-linear activation
DeepLearning on FPGAs 21



Improve convergence for GD: Simple improvements

Gradient descent:

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)

Momentum: Keep the momentum from previous updates

∆θ̂old = α1 · ∇θ`(D, θ̂old) + α2∆θ̂
old

θ̂new = θ̂old −∆θ̂old

(Mini-)Batch: Compute derivatives for multiple examples and
average direction (allows parallel computation of gradient)

θ̂new = θ̂old − α · 1

K

K∑

i=0

∇θ`(~xi, θ̂old)

Note: For Mini-Batch approaches the convergence is not
guranteed theoretically

DeepLearning on FPGAs 22



Improve convergence for GD: Simple improvements

Gradient descent:

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)
Momentum: Keep the momentum from previous updates

∆θ̂old = α1 · ∇θ`(D, θ̂old) + α2∆θ̂
old

θ̂new = θ̂old −∆θ̂old

(Mini-)Batch: Compute derivatives for multiple examples and
average direction (allows parallel computation of gradient)

θ̂new = θ̂old − α · 1

K

K∑

i=0

∇θ`(~xi, θ̂old)

Note: For Mini-Batch approaches the convergence is not
guranteed theoretically

DeepLearning on FPGAs 22



Improve convergence for GD: Simple improvements

Gradient descent:

θ̂new = θ̂old − α · ∇θ`(D, θ̂old)
Momentum: Keep the momentum from previous updates

∆θ̂old = α1 · ∇θ`(D, θ̂old) + α2∆θ̂
old

θ̂new = θ̂old −∆θ̂old

(Mini-)Batch: Compute derivatives for multiple examples and
average direction (allows parallel computation of gradient)

θ̂new = θ̂old − α · 1

K

K∑

i=0

∇θ`(~xi, θ̂old)

Note: For Mini-Batch approaches the convergence is not
guranteed theoretically

DeepLearning on FPGAs 22



Improve convergence: Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually: Small α = 0.001− 0.1 with a lot of data
Note: We can always reuse our data (multiple passes over dataset)
But: Stepsize is problem specific as always!

Practical suggestion: Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote: Changing the stepsize while training also possible

DeepLearning on FPGAs 23



Improve convergence: Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually: Small α = 0.001− 0.1 with a lot of data
Note: We can always reuse our data (multiple passes over dataset)
But: Stepsize is problem specific as always!

Practical suggestion: Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote: Changing the stepsize while training also possible

DeepLearning on FPGAs 23



Improve convergence: Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually: Small α = 0.001− 0.1 with a lot of data
Note: We can always reuse our data (multiple passes over dataset)
But: Stepsize is problem specific as always!

Practical suggestion: Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote: Changing the stepsize while training also possible
DeepLearning on FPGAs 23



Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function

DeepLearning on FPGAs 24



Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function

DeepLearning on FPGAs 24



Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function

DeepLearning on FPGAs 24



Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function

DeepLearning on FPGAs 24



Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function

DeepLearning on FPGAs 24



Improve convergence: Loss functions

Recap: δ
(L)
j should be relatively large for faster learning:

δ
(L)
j =

∂`(y
(L)
i )

∂y
(L)
i

· ∂h(y
(L)
i )

∂y
(L)
i

=
∂`(ŷ)

∂ŷ
· ∂h(ŷ))

∂ŷ

Squared error: `(D, θ̂) = 1
2 (y − ŷ)2 ⇒ ∂`

∂ŷ = − (y − ŷ)

→ δ
(L)
j = − (y − ŷ) · ∂h(ŷ))∂ŷ is still small if sigmoid is used

Cross-entropy: `(D, θ̂) = − (y ln (ŷ) + (1− y) ln (1− ŷ))

⇒ ∂`

∂ŷ
= −y

ŷ
+

1− y
1− ŷ =

ŷ − y
(1− ŷ)ŷ

→ δ
(L)
j = ŷ−y

(1−ŷ)ŷ ·
∂h(ŷ))
∂ŷ = ŷ − y cancels small sigmoid values

tends to be small
if h is sigmoid

derivative of
sigmoid function

DeepLearning on FPGAs 24



Improve Convergence: Start solution

Where do we start?
In SGD: Start with some θ. SGD will walk us the right direction
Important: For NN (specifically for MSE + sigmoid activation)
we need “sane” initialization:

δ
(L)
j = −

(
yi − f (L)j

)
f
(L)
j

(
1− f (L)j

)

⇒ δ
(L)
j = 0, if f

(L)
j = 0 or f

(L)
j = 1

Therefore: Init weights randomly with gaussian distribution

w
(l)
ij ∼ N (0, ε) with ε = 0.001− 0.1

Bonus: Negative weights are also present

DeepLearning on FPGAs 25



Summary

Important concepts:

For parameter optimization we define a loss function

For parameter optimization we use gradient descent

Neurons have activation functions to ensure non-linearity and
differentiability

Backpropagation is an algorithm to compute the gradient

Non-linear and sparse networks are usually better

Various techniques can be used to improve convergence
speed

DeepLearning on FPGAs 26



Homework
Homework until next meeting

Implement the following network to solve the XOR problem
x1

x2

Implement backpropagation for this network
Try a simple solution first: Hardcode one activation / one loss
function with fixed access to data structures

If you feel comfortable, add new activation / loss functions

Tip 1: Verify that the proposed network uses 9 parameters
Tip 2: Start with α = 1.0 and 10000 training examples
Note: We will later use C, so please use C or a C-like language
Question: Can you reduce the number of examples necessary?

DeepLearning on FPGAs 27


	Recap

